Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
171 changes: 171 additions & 0 deletions lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# dmeanstdev

> Compute the [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] of a one-dimensional double-precision floating-point ndarray.

<section class="intro">

The [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] are defined as
Copy link
Member

@kgryte kgryte Nov 14, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You should just copy the introduction from stats/strided/dmeanstdev instead of rolling your own. This makes find-and-replace easier when we are consistent in our docs across similar packages.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This comment still needs to be addressed.


<!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->

```math
\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i
```

<!-- <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@42d8f64d805113ab899c79c7c39d6c6bac7fe25c/lib/node_modules/@stdlib/stats/base/ndarray/mean/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
<br>
</div> -->

<!-- </equation> -->

and

<!-- <equation class="equation" label="eq:standard_deviation" align="center" raw="\sigma = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \mu)^2}" alt="Equation for the standard deviation."> -->

```math
\sigma = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \mu)^2}
```

<!-- <div class="equation" align="center" data-raw-text="\sigma = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \mu)^2}" data-equation="eq:standard_deviation">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@42d8f64d805113ab899c79c7c39d6c6bac7fe25c/lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for the standard deviation.">
<br>
</div> -->

<!-- </equation> -->

where the use of the term `n-1` is commonly referred to as Bessel's correction.

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var dmeanstdev = require( '@stdlib/stats/base/ndarray/dmeanstdev' );
```

#### dmeanstdev( arrays )

Computes the [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] of a one-dimensional double-precision floating-point ndarray.

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );

var opts = {
'dtype': 'float64'
};

var xbuf = new Float64Array( [ 1.0, 3.0, 4.0, 2.0 ] );
var x = new ndarray( opts.dtype, xbuf, [ 4 ], [ 1 ], 0, 'row-major' );
var out = new ndarray( opts.dtype, new Float64Array( 2 ), [ 2 ], [ 1 ], 0, 'row-major' );

var correction = scalar2ndarray( 1.0, opts );

var v = dmeanstdev( [ x, out, correction ] );
// returns <ndarray>
```

The function has the following parameters:

- **arrays**: array-like object containing the following ndarrays in order:

1. a one-dimensional input ndarray.
2. a one-dimensional output ndarray (of length 2) to store the [mean][arithmetic-mean] and [standard deviation][standard-deviation].
3. a zero-dimensional ndarray specifying the degrees of freedom adjustment.

The output ndarray contains two elements: the [arithmetic mean][arithmetic-mean] at index 0 and the [standard deviation][standard-deviation] at index 1. The [standard deviation][standard-deviation] is computed using the provided degrees of freedom adjustment. Setting the correction parameter to `1` corresponds to Bessel's correction (i.e., the corrected sample standard deviation). Setting it to `0` computes the population standard deviation.

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- If provided an empty one-dimensional ndarray, the computed [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] are equal to `NaN`.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float64Array = require( '@stdlib/array/float64' );
var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );
var dmeanstdev = require( '@stdlib/stats/base/ndarray/dmeanstdev' );

var opts = {
'dtype': 'float64'
};

var xbuf = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
var x = new ndarray( opts.dtype, xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
var out = new ndarray( opts.dtype, new Float64Array( 2 ), [ 2 ], [ 1 ], 0, 'row-major' );
var correction = scalar2ndarray( 1.0, opts );

console.log( ndarray2array( x ) );

var v = dmeanstdev( [ x, out, correction ] );
console.log( v );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean

[standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var Float64Array = require( '@stdlib/array/float64' );
var pkg = require( './../package.json' ).name;
var dmeanstdev = require( './../lib' );


// VARIABLES //

var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - array length
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var correction;
var xbuf;
var out;
var x;

xbuf = uniform( len, -10.0, 10.0, options );
x = new ndarray( options.dtype, xbuf, [ len ], [ 1 ], 0, 'row-major' );
out = new ndarray( 'float64', new Float64Array( 2 ), [ 2 ], [ 1 ], 0, 'row-major' );
correction = scalar2ndarray( 1.0, options );

return benchmark;

function benchmark( b ) {
var v;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = dmeanstdev( [ x, out, correction ] );
if ( isnan( v[ 0 ] ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( v[ 0 ] ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var len;
var min;
var max;
var f;
var i;

min = 1; // 10^min
max = 6; // 10^max

for ( i = min; i <= max; i++ ) {
len = pow( 10, i );
f = createBenchmark( len );
bench( pkg+':len='+len, f );
}
}
main();
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@

{{alias}}( arrays )
Computes the mean and standard deviation of a one-dimensional double-
precision floating-point ndarray.

If provided an empty ndarray, the function returns `NaN` values.

Parameters
----------
arrays: ArrayLikeObject<ndarray>
Array-like object containing the following ndarrays in order:

- a one-dimensional input ndarray.
- a one-dimensional output ndarray (of length 2) to store the mean
and standard deviation.
- a zero-dimensional ndarray specifying the degrees of freedom
adjustment.

Returns
-------
out: ndarray
An ndarray containing the mean and standard deviation.

Examples
--------
> var xbuf = new {{alias:@stdlib/array/float64}}( [ 2.0, 1.0, 2.0, -2.0 ] );
> var dt = 'float64';
> var sh = [ xbuf.length ];
> var sx = [ 1 ];
> var ox = 0;
> var ord = 'row-major';
> var x = new {{alias:@stdlib/ndarray/ctor}}( dt, xbuf, sh, sx, ox, ord );
> var o = new {{alias:@stdlib/array/float64}}( 2 );
> var out = new {{alias:@stdlib/ndarray/ctor}}( dt, o, [ 2 ], [ 1 ], ox, ord );
> var opts = { 'dtype': dt };
> var correction = {{alias:@stdlib/ndarray/from-scalar}}( 1.0, opts );
> {{alias}}( [ x, out, correction ] );
> {{alias:@stdlib/ndarray/to-array}}( out )
[ ~0.75, ~1.8930 ]

See Also
--------

Loading