| 
 | 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
 | 2 | +%                                                                              %  | 
 | 3 | +% SU2 configuration file                                                       %  | 
 | 4 | +% Case description: Unsteady FSI of a NACA 0012                                %  | 
 | 5 | +% Author: Nicola Fonzi, Vittorio Cavalieri                                     %  | 
 | 6 | +% Institution: Politecnico di Milano                                           %  | 
 | 7 | +% Date: Dec 10, 2020                                                           %  | 
 | 8 | +% File Version 7.0.8 "Blackbird" (or newer)                                    %  | 
 | 9 | +%                                                                              %  | 
 | 10 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
 | 11 | +%  | 
 | 12 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%  | 
 | 13 | +%  | 
 | 14 | +% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA)  | 
 | 15 | +%  | 
 | 16 | +SOLVER= RANS  | 
 | 17 | +%  | 
 | 18 | +% Specify turbulent model (NONE, SA, SA_NEG, SST)  | 
 | 19 | +KIND_TURB_MODEL= SST  | 
 | 20 | +%  | 
 | 21 | +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)  | 
 | 22 | +MATH_PROBLEM= DIRECT  | 
 | 23 | +%  | 
 | 24 | +% ------------------------- UNSTEADY SIMULATION -------------------------------%  | 
 | 25 | +%  | 
 | 26 | +TIME_DOMAIN = YES  | 
 | 27 | +%  | 
 | 28 | +% Numerical Method for Unsteady simulation(NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL)  | 
 | 29 | +TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER  | 
 | 30 | +%  | 
 | 31 | +% Time Step for dual time stepping simulations (s)  | 
 | 32 | +TIME_STEP= 1e-3  | 
 | 33 | +%  | 
 | 34 | +% Maximum Number of physical time steps.  | 
 | 35 | +TIME_ITER= 4000  | 
 | 36 | +MAX_TIME = 4.0  | 
 | 37 | +%  | 
 | 38 | +% Number of internal iterations (dual time method)  | 
 | 39 | +INNER_ITER= 50  | 
 | 40 | +%  | 
 | 41 | +% Restart after the transient phase has passed  | 
 | 42 | +RESTART_SOL = NO  | 
 | 43 | +%  | 
 | 44 | +% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%  | 
 | 45 | +%  | 
 | 46 | +% Mach number (non-dimensional, based on the free-stream values)  | 
 | 47 | +MACH_NUMBER= 0.1  | 
 | 48 | +% Angle of attack (degrees, only for compressible flows)  | 
 | 49 | +AOA= 0.0  | 
 | 50 | +%  | 
 | 51 | +% De-Dimensionalization  | 
 | 52 | +REF_DIMENSIONALIZATION = DIMENSIONAL  | 
 | 53 | +%  | 
 | 54 | +FREESTREAM_TEMPERATURE= 273.0  | 
 | 55 | +%  | 
 | 56 | +% Reynolds number (non-dimensional, based on the free-stream values)  | 
 | 57 | +REYNOLDS_NUMBER= 4e+6  | 
 | 58 | +%  | 
 | 59 | +% Reynolds length (1 m by default)  | 
 | 60 | +REYNOLDS_LENGTH= 1.0  | 
 | 61 | +%  | 
 | 62 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%  | 
 | 63 | +%  | 
 | 64 | +% Reference origin for moment computation  | 
 | 65 | +REF_ORIGIN_MOMENT_X = 0.25  | 
 | 66 | +REF_ORIGIN_MOMENT_Y = 0.00  | 
 | 67 | +REF_ORIGIN_MOMENT_Z = 0.00  | 
 | 68 | +%  | 
 | 69 | +% Reference length for pitching, rolling, and yawing non-dimensional moment  | 
 | 70 | +REF_LENGTH= 1.0  | 
 | 71 | +%  | 
 | 72 | +% Reference area for force coefficients (0 implies automatic calculation)  | 
 | 73 | +REF_AREA= 1.0  | 
 | 74 | +%  | 
 | 75 | +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%  | 
 | 76 | +%  | 
 | 77 | +% Navier-Stokes wall boundary marker(s) (NONE = no marker)  | 
 | 78 | +MARKER_HEATFLUX= ( airfoil, 0.0 )  | 
 | 79 | +%  | 
 | 80 | +% Farfield boundary marker(s) (NONE = no marker)  | 
 | 81 | +MARKER_FAR= ( farfield )  | 
 | 82 | +%  | 
 | 83 | +% Marker(s) of the surface to be plotted or designed  | 
 | 84 | +MARKER_PLOTTING= ( airfoil )  | 
 | 85 | +%  | 
 | 86 | +% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated  | 
 | 87 | +MARKER_MONITORING= ( airfoil )  | 
 | 88 | +%-------------- Coupling conditions -------------------------------------------%  | 
 | 89 | +%  | 
 | 90 | +DEFORM_MESH = YES  | 
 | 91 | +MARKER_DEFORM_MESH = ( airfoil )  | 
 | 92 | +DEFORM_STIFFNESS_TYPE = WALL_DISTANCE  | 
 | 93 | +DEFORM_LINEAR_SOLVER_ITER= 200  | 
 | 94 | +MARKER_FLUID_LOAD = ( airfoil )  | 
 | 95 | +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%  | 
 | 96 | +%  | 
 | 97 | +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)  | 
 | 98 | +NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES  | 
 | 99 | +%  | 
 | 100 | +% Courant-Friedrichs-Lewy condition of the finest grid  | 
 | 101 | +CFL_NUMBER= 20.0  | 
 | 102 | +%  | 
 | 103 | +% Adaptive CFL number (NO, YES)  | 
 | 104 | +CFL_ADAPT= NO  | 
 | 105 | +%  | 
 | 106 | +% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,  | 
 | 107 | +%                                        CFL max value )  | 
 | 108 | +CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )  | 
 | 109 | +%  | 
 | 110 | +% Runge-Kutta alpha coefficients  | 
 | 111 | +RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )  | 
 | 112 | +%  | 
 | 113 | +%  | 
 | 114 | +% Linear solver for the implicit formulation (BCGSTAB, FGMRES)  | 
 | 115 | +LINEAR_SOLVER= FGMRES  | 
 | 116 | +%  | 
 | 117 | +% Min error of the linear solver for the implicit formulation  | 
 | 118 | +LINEAR_SOLVER_ERROR= 1E-8  | 
 | 119 | +%  | 
 | 120 | +% Max number of iterations of the linear solver for the implicit formulation  | 
 | 121 | +LINEAR_SOLVER_ITER= 10  | 
 | 122 | +%  | 
 | 123 | +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%  | 
 | 124 | +%  | 
 | 125 | +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,  | 
 | 126 | +%                              TURKEL_PREC, MSW)  | 
 | 127 | +CONV_NUM_METHOD_FLOW= JST  | 
 | 128 | +%  | 
 | 129 | +% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)  | 
 | 130 | +%  | 
 | 131 | +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.  | 
 | 132 | +%           Required for 2nd order upwind schemes (NO, YES)  | 
 | 133 | +MUSCL_FLOW= YES  | 
 | 134 | +% Slope limiter (VENKATAKRISHNAN, MINMOD)  | 
 | 135 | +SLOPE_LIMITER_FLOW= VENKATAKRISHNAN  | 
 | 136 | +%  | 
 | 137 | +JST_SENSOR_COEFF= ( 0.5, 0.01 )  | 
 | 138 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)  | 
 | 139 | +TIME_DISCRE_FLOW= EULER_IMPLICIT  | 
 | 140 | +%  | 
 | 141 | +% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%  | 
 | 142 | +%  | 
 | 143 | +% Convective numerical method (SCALAR_UPWIND)  | 
 | 144 | +CONV_NUM_METHOD_TURB= SCALAR_UPWIND  | 
 | 145 | +%  | 
 | 146 | +% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)  | 
 | 147 | +%  | 
 | 148 | +MUSCL_TURB= NO  | 
 | 149 | +SLOPE_LIMITER_TURB= VENKATAKRISHNAN  | 
 | 150 | +%  | 
 | 151 | +% Time discretization (EULER_IMPLICIT)  | 
 | 152 | +TIME_DISCRE_TURB= EULER_IMPLICIT  | 
 | 153 | +%  | 
 | 154 | +% --------------------------- CONVERGENCE PARAMETERS --------------------------%  | 
 | 155 | +%  | 
 | 156 | +% Convergence criteria (CAUCHY, RESIDUAL)  | 
 | 157 | +CONV_CRITERIA = RESIDUAL  | 
 | 158 | +% Field to apply Cauchy Criterion to  | 
 | 159 | +CONV_FIELD= RMS_DENSITY  | 
 | 160 | +% Min value of the residual (log10 of the residual)  | 
 | 161 | +CONV_RESIDUAL_MINVAL= -9.0  | 
 | 162 | +%  | 
 | 163 | +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%  | 
 | 164 | +%  | 
 | 165 | +%  | 
 | 166 | +% Mesh input file  | 
 | 167 | +MESH_FILENAME= airfoil.su2  | 
 | 168 | +%  | 
 | 169 | +% Mesh input file format (SU2, CGNS, NETCDF_ASCII)  | 
 | 170 | +MESH_FORMAT= SU2  | 
 | 171 | +%  | 
 | 172 | +% Mesh output file  | 
 | 173 | +MESH_OUT_FILENAME= mesh_out.su2  | 
 | 174 | +%  | 
 | 175 | +% Restart flow input file  | 
 | 176 | +SOLUTION_FILENAME= restart_flow.dat  | 
 | 177 | +%  | 
 | 178 | +% Restart adjoint input file  | 
 | 179 | +SOLUTION_ADJ_FILENAME= restart_adj.dat  | 
 | 180 | +%  | 
 | 181 | +% Output file format (PARAVIEW, TECPLOT, STL)  | 
 | 182 | +TABULAR_FORMAT= CSV  | 
 | 183 | +%  | 
 | 184 | +% Output file convergence history (w/o extension)  | 
 | 185 | +CONV_FILENAME= history  | 
 | 186 | +%  | 
 | 187 | +% Output file restart flow  | 
 | 188 | +RESTART_FILENAME= restart_flow.dat  | 
 | 189 | +%  | 
 | 190 | +% Output file restart adjoint  | 
 | 191 | +RESTART_ADJ_FILENAME= restart_adj.dat  | 
 | 192 | +%  | 
 | 193 | +% Output file flow (w/o extension) variables  | 
 | 194 | +VOLUME_FILENAME= flow  | 
 | 195 | +%  | 
 | 196 | +% Output file surface flow coefficient (w/o extension)  | 
 | 197 | +SURFACE_FILENAME= surface_flow  | 
 | 198 | +%  | 
 | 199 | +% Writing solution file frequency  | 
 | 200 | +OUTPUT_WRT_FREQ = 10  | 
 | 201 | +%  | 
 | 202 | +HISTORY_WRT_FREQ_INNER=1  | 
 | 203 | +SCREEN_WRT_FREQ_INNER =1  | 
 | 204 | +% Writing convergence history frequency% Writing convergence history frequency (dual time, only written to screen)  | 
 | 205 | +HISTORY_WRT_FREQ_TIME=1  | 
 | 206 | +SCREEN_WRT_FREQ_TIME =1  | 
 | 207 | +%  | 
 | 208 | +SCREEN_OUTPUT=(TIME_ITER, INNER_ITER, DRAG, LIFT, RMS_DENSITY, REL_RMS_DENSITY,  CAUCHY_TAVG_DRAG, CAUCHY_TAVG_LIFT)  | 
 | 209 | +HISTORY_OUTPUT=(ITER,REL_RMS_RES,RMS_RES, AERO_COEFF,TAVG_AERO_COEFF, CAUCHY)  | 
 | 210 | +%  | 
0 commit comments