Skip to content
Merged
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 61 additions & 27 deletions temporalio/contrib/openai_agents/_trace_interceptor.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,15 @@
from __future__ import annotations

from contextlib import contextmanager
from typing import Any, Mapping, Protocol, Type
from typing import Any, Mapping, Protocol, Type, cast

from agents import custom_span, get_current_span, trace
from agents import CustomSpanData, custom_span, get_current_span, trace
from agents.tracing import (
get_trace_provider,
)
from agents.tracing.spans import NoOpSpan
from agents.tracing.provider import DefaultTraceProvider
from agents.tracing.scope import Scope
from agents.tracing.spans import NoOpSpan, SpanImpl

import temporalio.activity
import temporalio.api.common.v1
Expand Down Expand Up @@ -65,11 +67,15 @@ def context_from_header(
else workflow.info().workflow_type
)
data = (
{"activityId": activity.info().activity_id}
{
"activityId": activity.info().activity_id,
"activity": activity.info().activity_type,
}
if activity.in_activity()
else None
)
if get_trace_provider().get_current_trace() is None:
current_trace = get_trace_provider().get_current_trace()
if current_trace is None:
metadata = {
"temporal:workflowId": activity.info().workflow_id
if activity.in_activity()
Expand All @@ -79,16 +85,21 @@ def context_from_header(
else workflow.info().run_id,
"temporal:workflowType": workflow_type,
}
with trace(
current_trace = trace(
span_info["traceName"],
trace_id=span_info["traceId"],
metadata=metadata,
) as t:
with custom_span(name=span_name, parent=t, data=data):
yield
else:
with custom_span(name=span_name, parent=None, data=data):
yield
)
Scope.set_current_trace(current_trace)
current_span = get_trace_provider().get_current_span()
if current_span is None:
current_span = get_trace_provider().create_span(
span_data=CustomSpanData(name="", data={}), span_id=span_info["spanId"]
)
Scope.set_current_span(current_span)

with custom_span(name=span_name, parent=current_span, data=data):
yield


class OpenAIAgentsTracingInterceptor(
Expand All @@ -115,7 +126,7 @@ class OpenAIAgentsTracingInterceptor(
worker = Worker(client, task_queue="my-task-queue", interceptors=[interceptor])
"""

def __init__( # type: ignore[reportMissingSuperCall]
def __init__(
self,
payload_converter: temporalio.converter.PayloadConverter = temporalio.converter.default().payload_converter,
) -> None:
Expand Down Expand Up @@ -188,7 +199,7 @@ async def start_workflow(
**({"temporal:workflowId": input.id} if input.id else {}),
}
data = {"workflowId": input.id} if input.id else None
span_name = "temporal:startWorkflow"
span_name = f"temporal:startWorkflow"
if get_trace_provider().get_current_trace() is None:
with trace(
span_name + ":" + input.workflow, metadata=metadata, group_id=input.id
Expand All @@ -207,7 +218,7 @@ async def query_workflow(self, input: temporalio.client.QueryWorkflowInput) -> A
**({"temporal:workflowId": input.id} if input.id else {}),
}
data = {"workflowId": input.id, "query": input.query}
span_name = "temporal:queryWorkflow"
span_name = f"temporal:queryWorkflow"
if get_trace_provider().get_current_trace() is None:
with trace(span_name, metadata=metadata, group_id=input.id):
with custom_span(name=span_name, data=data):
Expand All @@ -226,7 +237,7 @@ async def signal_workflow(
**({"temporal:workflowId": input.id} if input.id else {}),
}
data = {"workflowId": input.id, "signal": input.signal}
span_name = "temporal:signalWorkflow"
span_name = f"temporal:signalWorkflow"
if get_trace_provider().get_current_trace() is None:
with trace(span_name, metadata=metadata, group_id=input.id):
with custom_span(name=span_name, data=data):
Expand Down Expand Up @@ -325,32 +336,55 @@ class _ContextPropagationWorkflowOutboundInterceptor(
async def signal_child_workflow(
self, input: temporalio.worker.SignalChildWorkflowInput
) -> None:
set_header_from_context(input, temporalio.workflow.payload_converter())
return await self.next.signal_child_workflow(input)
with custom_span(
name=f"temporal:signalChildWorkflow",
data={"workflowId": input.child_workflow_id},
):
set_header_from_context(input, temporalio.workflow.payload_converter())
await self.next.signal_child_workflow(input)

async def signal_external_workflow(
self, input: temporalio.worker.SignalExternalWorkflowInput
) -> None:
set_header_from_context(input, temporalio.workflow.payload_converter())
return await self.next.signal_external_workflow(input)
with custom_span(
name=f"temporal:signalExternalWorkflow",
data={"workflowId": input.workflow_id},
):
set_header_from_context(input, temporalio.workflow.payload_converter())
await self.next.signal_external_workflow(input)

def start_activity(
self, input: temporalio.worker.StartActivityInput
) -> temporalio.workflow.ActivityHandle:
with custom_span(
name=f"temporal:startActivity:{input.activity}",
):
set_header_from_context(input, temporalio.workflow.payload_converter())
return self.next.start_activity(input)
span = custom_span(
name=f"temporal:startActivity", data={"activity": input.activity}
)
span.start(mark_as_current=True)
set_header_from_context(input, temporalio.workflow.payload_converter())
handle = self.next.start_activity(input)
handle.add_done_callback(lambda _: span.finish())
return handle

async def start_child_workflow(
self, input: temporalio.worker.StartChildWorkflowInput
) -> temporalio.workflow.ChildWorkflowHandle:
span = custom_span(
name=f"temporal:startChildWorkflow", data={"workflow": input.workflow}
)
span.start(mark_as_current=True)
set_header_from_context(input, temporalio.workflow.payload_converter())
return await self.next.start_child_workflow(input)
handle = await self.next.start_child_workflow(input)
handle.add_done_callback(lambda _: span.finish())
return handle

def start_local_activity(
self, input: temporalio.worker.StartLocalActivityInput
) -> temporalio.workflow.ActivityHandle:
span = custom_span(
name=f"temporal:startLocalActivity", data={"activity": input.activity}
)
span.start(mark_as_current=True)
set_header_from_context(input, temporalio.workflow.payload_converter())
return self.next.start_local_activity(input)
handle = self.next.start_local_activity(input)
handle.add_done_callback(lambda _: span.finish())
return handle
Loading