@@ -38,7 +38,7 @@ Users can apply clustering with the following APIs:
38
38
<th colspan="4">Clustered</th>
39
39
</tr >
40
40
<tr >
41
- <th >Top-1 accuracy (%)</th >
41
+ <th>Top-1 accuracy (%)</th>
42
42
<th>Size of compressed .tflite (MB)</th>
43
43
<th>Configuration</th>
44
44
<th># of clusters</th>
@@ -47,37 +47,49 @@ Users can apply clustering with the following APIs:
47
47
</tr >
48
48
<tr >
49
49
<td rowspan="3">MobileNetV1</td>
50
- <td rowspan="3">71.02 </td>
51
- <td rowspan="3">14.96 </td>
50
+ <td rowspan="3">70.976 </td>
51
+ <td rowspan="3">14.97 </td>
52
52
</tr >
53
53
<tr >
54
54
<td>Selective (last 3 Conv2D layers)</td>
55
- <td>256, 256, 32</td>
56
- <td>70.62</td>
57
- <td>8.42</td>
55
+ <td>16, 16, 16</td>
56
+ <td>70.294</td>
57
+ <td>7.69</td>
58
+ </tr >
59
+ <tr >
60
+ <td>Selective (last 3 Conv2D layers)</td>
61
+ <td>32, 32, 32</td>
62
+ <td>70.69</td>
63
+ <td>8.22</td>
58
64
</tr >
59
65
<tr >
60
66
<td>Full (all Conv2D layers)</td>
61
- <td>64 </td>
62
- <td>66.07 </td>
63
- <td>2.98 </td>
67
+ <td>32 </td>
68
+ <td>69.4 </td>
69
+ <td>4.43 </td>
64
70
</tr >
65
71
<tr >
66
72
<td rowspan="3">MobileNetV2</td>
67
- <td rowspan="3">72.29 </td>
68
- <td rowspan="3">12.90 </td>
73
+ <td rowspan="3">71.778 </td>
74
+ <td rowspan="3">12.38 </td>
69
75
</tr >
70
76
<tr >
71
77
<td>Selective (last 3 Conv2D layers)</td>
72
- <td>256, 256, 32</td>
73
- <td>72.31</td>
74
- <td>7.00</td>
78
+ <td>16, 16, 16</td>
79
+ <td>70.742</td>
80
+ <td>6.68</td>
81
+ </tr >
82
+ <tr >
83
+ <td>Selective (last 3 Conv2D layers)</td>
84
+ <td>32, 32, 32</td>
85
+ <td>70.926</td>
86
+ <td>7.03</td>
75
87
</tr >
76
88
<tr >
77
89
<td >Full (all Conv2D layers)</td >
78
90
<td >32</td >
79
- <td >69.33 </td >
80
- <td >2.60 </td >
91
+ <td >69.744 </td >
92
+ <td >4.05 </td >
81
93
</tr >
82
94
</table >
83
95
@@ -87,9 +99,9 @@ The models were trained and tested on ImageNet.
87
99
88
100
<table >
89
101
<tr >
90
- <th rowspan=2 >Model</th>
91
- <th colspan=2 >Original</th>
92
- <th colspan=4 >Clustered</th>
102
+ <th rowspan="2" >Model</th>
103
+ <th colspan="2" >Original</th>
104
+ <th colspan="4" >Clustered</th>
93
105
</tr >
94
106
<tr >
95
107
<th>Top-1 accuracy (%)</th>
@@ -100,17 +112,25 @@ The models were trained and tested on ImageNet.
100
112
<th>Size of compressed .tflite (MB)</th>
101
113
</tr >
102
114
<tr >
103
- <td>DS-CNN-L</td>
104
- <td>95.03</td>
105
- <td>1.5</td>
106
- <td>Full</td>
107
- <td>32</td>
108
- <td>94.71</td>
109
- <td>0.3</td>
115
+ <td rowspan="3">DS-CNN-L</td>
116
+ <td rowspan="3">95.233</td>
117
+ <td rowspan="3">1.46</td>
118
+ </tr >
119
+ <tr >
120
+ <td >Full (all Conv2D layers)</td >
121
+ <td >32</td >
122
+ <td >95.09</td >
123
+ <td >0.39</td >
124
+ </tr >
125
+ <tr >
126
+ <td >Full (all Conv2D layers)</td >
127
+ <td >8</td >
128
+ <td >94.272</td >
129
+ <td >0.27</td >
110
130
</tr >
111
131
</table >
112
132
113
- The models were trained and tested on SpeechCommands v0.02.
133
+ The model was trained and tested on SpeechCommands v0.02.
114
134
115
135
NOTE: * Size of compressed .tflite* refers to the size of the zipped .tflite file obtained from the model from the following process:
116
136
1 . Serialize the Keras model into .h5 file
0 commit comments