@@ -215,11 +215,11 @@ def continued_fraction_evaluation(should_stop, iteration, values, gradients):
215
215
# We run two steps of modified Lentz's method per iteration.
216
216
# First step of the iteration: the even one.
217
217
new_values , new_gradients , _ = continued_fraction_step (
218
- iteration , values , gradients , _betainc_even_partial_numerator )
218
+ iteration , values , gradients , _betainc_even_partial_numerator )
219
219
220
220
# Second step of the iteration: the odd one.
221
221
new_values , new_gradients , delta = continued_fraction_step (
222
- iteration , new_values , new_gradients , _betainc_odd_partial_numerator )
222
+ iteration , new_values , new_gradients , _betainc_odd_partial_numerator )
223
223
224
224
should_stop = should_stop | (tf .math .abs (delta - one ) < tolerance )
225
225
@@ -420,7 +420,7 @@ def _betainc_partials(a, b, x):
420
420
x = tf .convert_to_tensor (x , dtype = dtype )
421
421
422
422
broadcast_shape = functools .reduce (
423
- ps .broadcast_shape , [ps .shape (a ), ps .shape (b ), ps .shape (x )])
423
+ ps .broadcast_shape , [ps .shape (a ), ps .shape (b ), ps .shape (x )])
424
424
425
425
a = tf .broadcast_to (a , broadcast_shape )
426
426
b = tf .broadcast_to (b , broadcast_shape )
0 commit comments