TensorFlow Probability 0.11.0
Release notes
This is the 0.11 release of TensorFlow Probability. It is tested and stable against TensorFlow version 2.3.0.
Change notes
Links point to examples in the TFP 0.11.0 release Colab.
-
Distributions
- Support automatic vectorization in
JointDistribution*AutoBatchedinstances. - Reproducible sampling, even in Eager.
- Add
Weibulldistribution. - Add
TruncatedCauchydistribution. - Add
SphericalUniformdistribution. - Add
PowerSphericaldistribution. - Add
LogLogisticdistribution. - Add
Batesdistribution. - Add
GeneralizedNormaldistribution. - Add
JohnsonSUdistribution. - Add
ContinuousBernoullidistribution. - Simplify
MultivariateNormalDiagPlusLowRankand make it tape-safer; remove deprecation. - Added
KL(PowerSpherical || VonMisesFisher) - Adds
KL(PowerSpherical || UniformSpherical),PowerSpherical.entropyandSphericalUniform.entropy - Fix gradient for
Gammasamples with respect torateparameter. - Increase accuracy of default
Distribution.{log_}survival_functioniflog_cdfis implemented butcdfis not. - More accurate log_probs and entropies across many
Distributions that were subtracting lgammas under the hood. - Fix
Multinomiallog_probwhen classes have zero probability. - Improve performance of
Multinomialsampler whentotal_countis high. - More accurate
Binomialsampling and log_prob for large counts and small probabilities. Binomialwill no longer emit samples below 0 or abovetotal_count.- Add
nanhandling forBateslog_probandcdf. - Allow named arguments in
JointDistribution*.sample().
- Support automatic vectorization in
-
Bijectors:
- Add the
Splitbijector. - Add
GompertzCDFand ShiftedGompertzCDF bijectors - Add
Sinhbijector. Scalebijector can take inlog_scaleparameter.Blockwisenow supports size changing bijectors.- Allow using conditioning inputs in
AutoregressiveNetwork. - Move bijector caching logic to its own library.
- Add the
-
MCMC:
tfp.mcmcnow supports stateless sampling.tfp.mcmc.sample_chain(..., seed=(1,2))is expected to always return the same results (within a release), and is deterministic (provided the underlying kernel is deterministic).- Better static shape inference for Metropolis-Hastings kernels with partially-specified shapes.
TransformedTransitionKernelnests properly with itself and other wrapper kernels.- Pretty-printing MCMC kernel results.
-
Structured time series:
- Automatically constrain STS inference when weights have constrained support.
-
Math:
- Add
tfp.math.bessel_iv_ratiofor ratios of modified bessel functions of the first kind. round_exponential_bump_functionadded totfp.math.- Support dynamic
num_stepsand custom convergence_criteria intfp.math.minimize. - Add
tfp.math.log_cosh. - Define more accurate
lbetaandlog_gamma_difference.
- Add
-
Jax/Numpy substrates:
- TFP runs on JAX!
- Expose
MaskedAutogregressiveFlowto Numpy and JAX.
-
Experimental:
- Add experimental Sequential Monte Carlo sample driver.
- Add experimental tools for estimating parameters of sequential models using iterated filtering.
- Use
Distributions asCompositeTensors. - Inference Gym: Add logistic regression.
- Add support for convergence criteria in
tfp.vi.fit_surrogate_posterior.
-
Other:
- Added
tfp.random.split_seedfor stateless sampling. Movedtfp.math.random_{rademacher,rayleigh}totfp.random.{rademacher,rayleigh}. - Possibly breaking change:
SeedStreamseedargument may not be aTensor.
- Added
Huge thanks to all the contributors to this release!
- Alexey Radul
- anatoly
- Anudhyan Boral
- Ben Lee
- Brian Patton
- Christopher Suter
- Colin Carroll
- Cristi Cobzarenco
- Dan Moldovan
- Dave Moore
- David Kao
- Emily Fertig
- erdembanak
- Eugene Brevdo
- Fearghus Robert Keeble
- Frank Dellaert
- Gabriel Loaiza
- Gregory Flamich
- Ian Langmore
- Iqrar Agalosi Nureyza
- Jacob Burnim
- jeffpollock9
- jekbradbury
- Jimmy Yao
- johannespitz
- Joshua V. Dillon
- Junpeng Lao
- Kate Lin
- Ken Franko
- luke199629
- Mark Daoust
- Markus Kaiser
- Martin Jul
- Matthew Feickert
- Maxim Polunin
- Nicolas
- npfp
- Pavel Sountsov
- Peng YU
- Rebecca Chen
- Rif A. Saurous
- Ru Pei
- Sayam753
- Sharad Vikram
- Srinivas Vasudevan
- summeryue
- Tom Charnock
- Tres Popp
- Wataru Hashimoto
- Yash Katariya
- Zichun Ye