@@ -69,25 +69,25 @@ class FakeSession : public tensorflow::Session {
69
69
explicit FakeSession (absl::optional<int64_t > expected_timeout)
70
70
: expected_timeout_(expected_timeout) {}
71
71
~FakeSession () override = default ;
72
- Status Create (const GraphDef& graph) override {
72
+ absl:: Status Create (const GraphDef& graph) override {
73
73
return errors::Unimplemented (" not available in fake" );
74
74
}
75
- Status Extend (const GraphDef& graph) override {
75
+ absl:: Status Extend (const GraphDef& graph) override {
76
76
return errors::Unimplemented (" not available in fake" );
77
77
}
78
78
79
- Status Close () override {
79
+ absl:: Status Close () override {
80
80
return errors::Unimplemented (" not available in fake" );
81
81
}
82
82
83
- Status ListDevices (std::vector<DeviceAttributes>* response) override {
83
+ absl:: Status ListDevices (std::vector<DeviceAttributes>* response) override {
84
84
return errors::Unimplemented (" not available in fake" );
85
85
}
86
86
87
- Status Run (const std::vector<std::pair<string, Tensor>>& inputs,
88
- const std::vector<string>& output_names,
89
- const std::vector<string>& target_nodes,
90
- std::vector<Tensor>* outputs) override {
87
+ absl:: Status Run (const std::vector<std::pair<string, Tensor>>& inputs,
88
+ const std::vector<string>& output_names,
89
+ const std::vector<string>& target_nodes,
90
+ std::vector<Tensor>* outputs) override {
91
91
if (expected_timeout_) {
92
92
LOG (FATAL) << " Run() without RunOptions not expected to be called" ;
93
93
}
@@ -96,21 +96,23 @@ class FakeSession : public tensorflow::Session {
96
96
&run_metadata);
97
97
}
98
98
99
- Status Run (const RunOptions& run_options,
100
- const std::vector<std::pair<string, Tensor>>& inputs,
101
- const std::vector<string>& output_names,
102
- const std::vector<string>& target_nodes,
103
- std::vector<Tensor>* outputs, RunMetadata* run_metadata) override {
99
+ absl::Status Run (const RunOptions& run_options,
100
+ const std::vector<std::pair<string, Tensor>>& inputs,
101
+ const std::vector<string>& output_names,
102
+ const std::vector<string>& target_nodes,
103
+ std::vector<Tensor>* outputs,
104
+ RunMetadata* run_metadata) override {
104
105
return Run (run_options, inputs, output_names, target_nodes, outputs,
105
106
run_metadata, thread::ThreadPoolOptions ());
106
107
}
107
108
108
- Status Run (const RunOptions& run_options,
109
- const std::vector<std::pair<string, Tensor>>& inputs,
110
- const std::vector<string>& output_names,
111
- const std::vector<string>& target_nodes,
112
- std::vector<Tensor>* outputs, RunMetadata* run_metadata,
113
- const thread::ThreadPoolOptions& thread_pool_options) override {
109
+ absl::Status Run (
110
+ const RunOptions& run_options,
111
+ const std::vector<std::pair<string, Tensor>>& inputs,
112
+ const std::vector<string>& output_names,
113
+ const std::vector<string>& target_nodes, std::vector<Tensor>* outputs,
114
+ RunMetadata* run_metadata,
115
+ const thread::ThreadPoolOptions& thread_pool_options) override {
114
116
if (expected_timeout_) {
115
117
CHECK_EQ (*expected_timeout_, run_options.timeout_in_ms ());
116
118
}
@@ -143,8 +145,8 @@ class FakeSession : public tensorflow::Session {
143
145
}
144
146
145
147
// Parses TensorFlow Examples from a string Tensor.
146
- static Status GetExamples (const Tensor& input,
147
- std::vector<Example>* examples) {
148
+ static absl:: Status GetExamples (const Tensor& input,
149
+ std::vector<Example>* examples) {
148
150
examples->clear ();
149
151
const int batch_size = input.dim_size (0 );
150
152
const auto & flat_input = input.flat <tstring>();
@@ -183,9 +185,9 @@ class FakeSession : public tensorflow::Session {
183
185
// Creates a Tensor by copying the "class" feature from each Example.
184
186
// Requires each Example have an bytes feature called "class" which is of the
185
187
// same non-zero length.
186
- static Status GetClassTensor (const std::vector<Example>& examples,
187
- const std::vector<string>& output_names,
188
- Tensor* classes, Tensor* scores) {
188
+ static absl:: Status GetClassTensor (const std::vector<Example>& examples,
189
+ const std::vector<string>& output_names,
190
+ Tensor* classes, Tensor* scores) {
189
191
if (examples.empty ()) {
190
192
return errors::Internal (" empty example list" );
191
193
}
@@ -281,7 +283,7 @@ class ClassifierTest : public ::testing::TestWithParam<bool> {
281
283
return example;
282
284
}
283
285
284
- Status Create () {
286
+ absl:: Status Create () {
285
287
std::unique_ptr<SavedModelBundle> saved_model (new SavedModelBundle);
286
288
saved_model->meta_graph_def = saved_model_bundle_->meta_graph_def ;
287
289
saved_model->session = std::move (saved_model_bundle_->session );
@@ -699,7 +701,7 @@ TEST_P(ClassifierTest, InvalidNamedSignature) {
699
701
request_.mutable_input ()->mutable_example_list ()->mutable_examples ();
700
702
*examples->Add () = example ({{" dos" , 2 }, {" uno" , 1 }});
701
703
*examples->Add () = example ({{" cuatro" , 4 }, {" tres" , 3 }});
702
- Status status = classifier_->Classify (request_, &result_);
704
+ absl:: Status status = classifier_->Classify (request_, &result_);
703
705
704
706
ASSERT_FALSE (status.ok ());
705
707
EXPECT_EQ (static_cast <absl::StatusCode>(absl::StatusCode::kInvalidArgument ),
@@ -723,7 +725,7 @@ TEST_P(ClassifierTest, MalformedScores) {
723
725
request_.mutable_input ()->mutable_example_list ()->mutable_examples ();
724
726
*examples->Add () = example ({{" dos" , 2 }, {" uno" , 1 }});
725
727
*examples->Add () = example ({{" cuatro" , 4 }, {" tres" , 3 }});
726
- Status status = classifier_->Classify (request_, &result_);
728
+ absl:: Status status = classifier_->Classify (request_, &result_);
727
729
728
730
ASSERT_FALSE (status.ok ());
729
731
EXPECT_EQ (static_cast <absl::StatusCode>(absl::StatusCode::kInvalidArgument ),
@@ -748,7 +750,7 @@ TEST_P(ClassifierTest, MissingClassificationSignature) {
748
750
request_.mutable_input ()->mutable_example_list ()->mutable_examples ();
749
751
*examples->Add () = example ({{" dos" , 2 }});
750
752
// TODO(b/26220896): This error should move to construction time.
751
- Status status = classifier_->Classify (request_, &result_);
753
+ absl:: Status status = classifier_->Classify (request_, &result_);
752
754
ASSERT_FALSE (status.ok ());
753
755
EXPECT_EQ (static_cast <absl::StatusCode>(absl::StatusCode::kInvalidArgument ),
754
756
status.code ())
@@ -767,7 +769,7 @@ TEST_P(ClassifierTest, EmptyInput) {
767
769
TF_ASSERT_OK (Create ());
768
770
// Touch input.
769
771
request_.mutable_input ();
770
- Status status = classifier_->Classify (request_, &result_);
772
+ absl:: Status status = classifier_->Classify (request_, &result_);
771
773
ASSERT_FALSE (status.ok ());
772
774
EXPECT_EQ (status.code (), error::Code::INVALID_ARGUMENT);
773
775
EXPECT_THAT (status.message (), ::testing::HasSubstr (" Input is empty" ));
@@ -784,7 +786,7 @@ TEST_P(ClassifierTest, EmptyExampleList) {
784
786
TF_ASSERT_OK (Create ());
785
787
// Touch ExampleList.
786
788
request_.mutable_input ()->mutable_example_list ();
787
- Status status = classifier_->Classify (request_, &result_);
789
+ absl:: Status status = classifier_->Classify (request_, &result_);
788
790
ASSERT_FALSE (status.ok ());
789
791
EXPECT_EQ (status.code (), error::Code::INVALID_ARGUMENT);
790
792
EXPECT_THAT (status.message (), ::testing::HasSubstr (" Input is empty" ));
@@ -803,7 +805,7 @@ TEST_P(ClassifierTest, EmptyExampleListWithContext) {
803
805
*request_.mutable_input ()
804
806
->mutable_example_list_with_context ()
805
807
->mutable_context () = example ({{" dos" , 2 }});
806
- Status status = classifier_->Classify (request_, &result_);
808
+ absl:: Status status = classifier_->Classify (request_, &result_);
807
809
ASSERT_FALSE (status.ok ());
808
810
EXPECT_EQ (status.code (), error::Code::INVALID_ARGUMENT);
809
811
EXPECT_THAT (status.message (), ::testing::HasSubstr (" Input is empty" ));
@@ -826,7 +828,7 @@ TEST_P(ClassifierTest, RunsFails) {
826
828
auto * examples =
827
829
request_.mutable_input ()->mutable_example_list ()->mutable_examples ();
828
830
*examples->Add () = example ({{" dos" , 2 }});
829
- Status status = classifier_->Classify (request_, &result_);
831
+ absl:: Status status = classifier_->Classify (request_, &result_);
830
832
ASSERT_FALSE (status.ok ());
831
833
EXPECT_THAT (status.ToString (), ::testing::HasSubstr (" Run totally failed" ));
832
834
@@ -853,7 +855,7 @@ TEST_P(ClassifierTest, ClassesIncorrectTensorBatchSize) {
853
855
*examples->Add () = example ({{" dos" , 2 }, {" uno" , 1 }});
854
856
*examples->Add () = example ({{" cuatro" , 4 }, {" tres" , 3 }});
855
857
856
- Status status = classifier_->Classify (request_, &result_);
858
+ absl:: Status status = classifier_->Classify (request_, &result_);
857
859
ASSERT_FALSE (status.ok ());
858
860
EXPECT_THAT (status.ToString (), ::testing::HasSubstr (" batch size" ));
859
861
@@ -881,7 +883,7 @@ TEST_P(ClassifierTest, ClassesIncorrectTensorType) {
881
883
*examples->Add () = example ({{" dos" , 2 }, {" uno" , 1 }});
882
884
*examples->Add () = example ({{" cuatro" , 4 }, {" tres" , 3 }});
883
885
884
- Status status = classifier_->Classify (request_, &result_);
886
+ absl:: Status status = classifier_->Classify (request_, &result_);
885
887
ASSERT_FALSE (status.ok ());
886
888
EXPECT_THAT (status.ToString (),
887
889
::testing::HasSubstr (" Expected classes Tensor of DT_STRING" ));
@@ -909,7 +911,7 @@ TEST_P(ClassifierTest, ScoresIncorrectTensorBatchSize) {
909
911
*examples->Add () = example ({{" dos" , 2 }, {" uno" , 1 }});
910
912
*examples->Add () = example ({{" cuatro" , 4 }, {" tres" , 3 }});
911
913
912
- Status status = classifier_->Classify (request_, &result_);
914
+ absl:: Status status = classifier_->Classify (request_, &result_);
913
915
ASSERT_FALSE (status.ok ());
914
916
EXPECT_THAT (status.ToString (), ::testing::HasSubstr (" batch size" ));
915
917
@@ -936,7 +938,7 @@ TEST_P(ClassifierTest, ScoresIncorrectTensorType) {
936
938
*examples->Add () = example ({{" dos" , 2 }, {" uno" , 1 }});
937
939
*examples->Add () = example ({{" cuatro" , 4 }, {" tres" , 3 }});
938
940
939
- Status status = classifier_->Classify (request_, &result_);
941
+ absl:: Status status = classifier_->Classify (request_, &result_);
940
942
ASSERT_FALSE (status.ok ());
941
943
EXPECT_THAT (status.ToString (),
942
944
::testing::HasSubstr (" Expected scores Tensor of DT_FLOAT" ));
@@ -965,7 +967,7 @@ TEST_P(ClassifierTest, MismatchedNumberOfTensorClasses) {
965
967
*examples->Add () = example ({{" dos" , 2 }, {" uno" , 1 }});
966
968
*examples->Add () = example ({{" cuatro" , 4 }, {" tres" , 3 }});
967
969
968
- Status status = classifier_->Classify (request_, &result_);
970
+ absl:: Status status = classifier_->Classify (request_, &result_);
969
971
ASSERT_FALSE (status.ok ());
970
972
EXPECT_THAT (
971
973
status.ToString (),
0 commit comments