@@ -40,18 +40,18 @@ open Algebra-on
4040
4141# Beck's coequaliser
4242
43- Let $(F \dashv U) : \ca{C} \leftrightarrows \ca{D}$ be a pair of
44- [ adjoint functors ] . Recall that every such adjunction [ induces] a
45- [ monad] $T $ (which we will abbreviate by $T$) on the category $\ca{C}$,
46- and a "[ comparison] " functor $K : \ca{C } \to \ca{C}^{T}$ into the
47- [ Eilenberg-Moore category] of $T$. In this module we will lay out a
48- sufficient condition for the functor $K to have a left adjoint, which we
49- denote $K^{-1}$. Let us first establish a result about the presentation
50- of $T$-[ algebras] by "generators and relations".
43+ Let $F : \ca{C} \to \ca{D}$ be a functor admitting a [ right adjoint ]
44+ $U : \ca{D} \to \ca{C}$ . Recall that every adjunction [ induces] a
45+ [ monad] $UF $ (which we will call $T$ for short ) on the category
46+ $\ca{C}$, and a "[ comparison] " functor $K : \ca{D } \to \ca{C}^{T}$ into
47+ the [ Eilenberg-Moore category] of $T$. In this module we will lay out a
48+ sufficient condition for the functor $K$ to have a left adjoint, which
49+ we call $K^{-1}$ ( ` Comparison⁻¹ ` ) . Let us first establish a result about
50+ the presentation of $T$-[ algebras] by "generators and relations".
5151
5252[ monad ] : Cat.Diagram.Monad.html
5353[ induces ] : Cat.Functor.Adjoint.Monad.html
54- [ adjoint functors ] : Cat.Functor.Adjoint.html
54+ [ right adjoint ] : Cat.Functor.Adjoint.html
5555[ comparison ] : Cat.Functor.Adjoint.Monadic.html
5656[ algebras ] : Cat.Diagram.Monad.html#algebras-over-a-monad
5757[ Eilenberg-Moore category ] : Cat.Diagram.Monad.html#eilenberg-moore-category
0 commit comments