Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions src/1Lab/Path/IdentitySystem.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -176,6 +176,18 @@ identity-system-gives-path {R = R} {r = r} ids =
∙ transport-refl _ )
```

In particular, swapping the arguments of the relation in an identity system
yields another identity system.

```agda
flip-identity-system :
∀ {ℓ ℓ'} {A : Type ℓ} {R : A → A → Type ℓ'} {r : ∀ a → R a a}
→ is-identity-system R r
→ is-identity-system (flip R) r
flip-identity-system ids =
equiv-path→identity-system $ identity-system-gives-path ids ∙e sym-equiv
```

## Based identity systems {defines="based-identity-system unary-identity-system"}

It is sometimes useful to characterise the *based* identity type at
Expand Down
8 changes: 8 additions & 0 deletions src/Data/Wellfounded/Properties.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,14 @@ Wf-is-prop : is-prop (Wf R)
Wf-is-prop = Π-is-hlevel 1 Acc-is-prop
```

<!--
```agda
instance
H-Level-Acc : ∀ {x n} → H-Level (Acc R x) (suc n)
H-Level-Acc = prop-instance (Acc-is-prop _)
```
-->

## Instances

The usual induction principle for the natural numbers is equivalent to
Expand Down
36 changes: 36 additions & 0 deletions src/HoTT.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,9 @@ open import Cat.Bi.Base
open import Cat.Prelude
open import Cat.Gaunt

open import Data.Wellfounded.Properties
open import Data.Set.Material.HIT
open import Data.Wellfounded.Base
open import Data.Set.Surjection
open import Data.Wellfounded.W
open import Data.Fin.Finite using (Listing→choice)
Expand All @@ -65,6 +67,7 @@ open import Homotopy.Pushout
open import Homotopy.Wedge
open import Homotopy.Base

open import Order.Ordinal.Base
open import Order.Base

import Algebra.Monoid.Category as Monoid
Expand Down Expand Up @@ -1072,6 +1075,39 @@ _ = AC→LEM
* Lemma 10.1.13: `Susp-prop-is-set`{.Agda}, `Susp-prop-path`{.Agda}
* Theorem 10.1.14: `AC→LEM`{.Agda}

### 10.3: Ordinal Numbers

<!--
```agda
_ = Acc
_ = Acc-is-prop
_ = Wf
_ = Wf-is-prop
_ = <-wf
_ = W-well-founded
_ = is-simulation
_ = is-simulation.has-injective
_ = Ordinal-poset
_ = simulation-unique
_ = Ordinal
_ = Ord
```
-->

* Definition 10.3.1: `Acc`{.Agda}
* Lemma 10.3.2: `Acc-is-prop`{.Agda}
* Definition 10.3.3: `Wf`{.Agda}
* Lemma 10.3.4: `Wf-is-prop`{.Agda}
* Example 10.3.5: `<-wf`{.Agda}
* Example 10.3.6: `W-well-founded`{.Agda}
* Several theorems about extensional well-founded sets are stated only for ordinals.
* Definition 10.3.11: `is-simulation`{.Agda}
* Lemma 10.3.12: `is-simulation.has-injective`{.Agda}
* Corollary 10.3.15: `Ordinal-poset`{.Agda}
* Lemma 10.3.16: `simulation-unique`{.Agda}
* Definition 10.3.17: `Ordinal`{.Agda}
* Theorem 10.3.20: `Ord`{.Agda}

### 10.5: The cumulative hierarchy

<!--
Expand Down
Loading
Loading