@@ -353,7 +353,7 @@ def __init__(
353353 name = "batch_trainers_b_only"
354354 )
355355
356- with tf .name_scope ("full_gradient " ):
356+ with tf .name_scope ("batch_gradient " ):
357357 batch_gradient = batch_trainers .gradient [0 ][0 ]
358358 batch_gradient = tf .reduce_sum (tf .abs (batch_gradient ), axis = 0 )
359359
@@ -396,18 +396,18 @@ def __init__(
396396 name = "full_data_trainers_b_only"
397397 )
398398 with tf .name_scope ("full_gradient" ):
399- #full_gradient = full_data_trainers.gradient[0][0]
400- #full_gradient = tf.reduce_sum(tf.abs(full_gradient), axis=0)
401- full_gradient = full_data_model .neg_jac
399+ # full_gradient = full_data_trainers.gradient[0][0]
400+ # full_gradient = tf.reduce_sum(tf.abs(full_gradient), axis=0)
401+ full_gradient = tf . reduce_sum ( full_data_model .neg_jac , axis = 0 )
402402 # full_gradient = tf.add_n(
403403 # [tf.reduce_sum(tf.abs(grad), axis=0) for (grad, var) in full_data_trainers.gradient])
404404
405405 with tf .name_scope ("newton-raphson" ):
406406 # tf.gradients(- full_data_model.log_likelihood, [model_vars.a, model_vars.b])
407407 # Full data model:
408408 param_grad_vec = full_data_model .neg_jac
409- #param_grad_vec = tf.gradients(- full_data_model.log_likelihood, model_vars.params)[0]
410- #param_grad_vec_t = tf.transpose(param_grad_vec)
409+ # param_grad_vec = tf.gradients(- full_data_model.log_likelihood, model_vars.params)[0]
410+ # param_grad_vec_t = tf.transpose(param_grad_vec)
411411
412412 delta_t = tf .squeeze (tf .matrix_solve_ls (
413413 full_data_model .neg_hessian ,
@@ -425,9 +425,9 @@ def __init__(
425425
426426 # Batched data model:
427427 param_grad_vec_batched = batch_jac .neg_jac
428- #param_grad_vec_batched = tf.gradients(- batch_model.log_likelihood,
428+ # param_grad_vec_batched = tf.gradients(- batch_model.log_likelihood,
429429 # model_vars.params)[0]
430- #param_grad_vec_batched_t = tf.transpose(param_grad_vec_batched)
430+ # param_grad_vec_batched_t = tf.transpose(param_grad_vec_batched)
431431
432432 delta_batched_t = tf .squeeze (tf .matrix_solve_ls (
433433 batch_hessians .neg_hessian ,
@@ -876,7 +876,7 @@ def __init__(
876876 if input_data .size_factors is not None :
877877 X = np .divide (X , size_factors_init )
878878
879- #Xdiff = X - np.exp(input_data.design_loc @ init_a)
879+ # Xdiff = X - np.exp(input_data.design_loc @ init_a)
880880 # Define xarray version of init so that Xdiff can be evaluated lazy by dask.
881881 init_a_xr = data_utils .xarray_from_data (init_a , dims = ("design_loc_params" , "features" ))
882882 init_a_xr .coords ["design_loc_params" ] = input_data .design_loc .coords ["design_loc_params" ]
0 commit comments