1111from .model import ProcessModel
1212from .training_strategies import TrainingStrategies
1313
14- logger = logging .getLogger ("batchglm" )
15-
1614
1715class Estimator (EstimatorAll , AbstractEstimator , ProcessModel ):
1816 """
@@ -185,7 +183,7 @@ def init_par(
185183 init_a_str = init_a .lower ()
186184 # Chose option if auto was chosen
187185 if init_a .lower () == "auto" :
188- init_a = "closed_form "
186+ init_a = "standard "
189187
190188 if init_a .lower () == "closed_form" :
191189 groupwise_means , init_a , rmsd_a = closedform_nb_glm_logmu (
@@ -203,8 +201,8 @@ def init_par(
203201 if np .any (input_data .size_factors != 1 ):
204202 self ._train_loc = True
205203
206- logger .debug ("Using closed-form MLE initialization for mean" )
207- logger .debug ("Should train mu: %s" , self ._train_loc )
204+ logging . getLogger ( "batchglm" ) .debug ("Using closed-form MLE initialization for mean" )
205+ logging . getLogger ( "batchglm" ) .debug ("Should train mu: %s" , self ._train_loc )
208206 elif init_a .lower () == "standard" :
209207 if isinstance (input_data .X , SparseXArrayDataArray ):
210208 overall_means = input_data .X .mean (dim = "observations" )
@@ -216,14 +214,14 @@ def init_par(
216214 init_a [0 , :] = np .log (overall_means )
217215 self ._train_loc = True
218216
219- logger .debug ("Using standard initialization for mean" )
220- logger .debug ("Should train mu: %s" , self ._train_loc )
217+ logging . getLogger ( "batchglm" ) .debug ("Using standard initialization for mean" )
218+ logging . getLogger ( "batchglm" ) .debug ("Should train mu: %s" , self ._train_loc )
221219 elif init_a .lower () == "all_zero" :
222220 init_a = np .zeros ([input_data .num_loc_params , input_data .num_features ])
223221 self ._train_loc = True
224222
225- logger .debug ("Using all_zero initialization for mean" )
226- logger .debug ("Should train mu: %s" , self ._train_loc )
223+ logging . getLogger ( "batchglm" ) .debug ("Using all_zero initialization for mean" )
224+ logging . getLogger ( "batchglm" ) .debug ("Should train mu: %s" , self ._train_loc )
227225 else :
228226 raise ValueError ("init_a string %s not recognized" % init_a )
229227
@@ -243,8 +241,8 @@ def init_par(
243241 init_b = np .zeros ([input_data .num_scale_params , input_data .X .shape [1 ]])
244242 init_b [0 , :] = init_b_intercept
245243
246- logger .debug ("Using standard-form MME initialization for dispersion" )
247- logger .debug ("Should train r: %s" , self ._train_scale )
244+ logging . getLogger ( "batchglm" ) .debug ("Using standard-form MME initialization for dispersion" )
245+ logging . getLogger ( "batchglm" ) .debug ("Should train r: %s" , self ._train_scale )
248246 elif init_b .lower () == "closed_form" :
249247 dmats_unequal = False
250248 if input_data .design_loc .shape [1 ] == input_data .design_scale .shape [1 ]:
@@ -269,13 +267,13 @@ def init_par(
269267 link_fn = lambda r : np .log (self .np_clip_param (r , "r" ))
270268 )
271269
272- logger .debug ("Using closed-form MME initialization for dispersion" )
273- logger .debug ("Should train r: %s" , self ._train_scale )
270+ logging . getLogger ( "batchglm" ) .debug ("Using closed-form MME initialization for dispersion" )
271+ logging . getLogger ( "batchglm" ) .debug ("Should train r: %s" , self ._train_scale )
274272 elif init_b .lower () == "all_zero" :
275273 init_b = np .zeros ([input_data .num_scale_params , input_data .X .shape [1 ]])
276274
277- logger .debug ("Using standard initialization for dispersion" )
278- logger .debug ("Should train r: %s" , self ._train_scale )
275+ logging . getLogger ( "batchglm" ) .debug ("Using standard initialization for dispersion" )
276+ logging . getLogger ( "batchglm" ) .debug ("Should train r: %s" , self ._train_scale )
279277 else :
280278 raise ValueError ("init_b string %s not recognized" % init_b )
281279 else :
@@ -291,7 +289,7 @@ def init_par(
291289 init_loc [my_idx ] = init_model .a_var [init_idx ]
292290
293291 init_a = init_loc
294- logger .debug ("Using initialization based on input model for mean" )
292+ logging . getLogger ( "batchglm" ) .debug ("Using initialization based on input model for mean" )
295293
296294 # Scale model:
297295 if isinstance (init_b , str ) and (init_b .lower () == "auto" or init_b .lower () == "init_model" ):
@@ -305,7 +303,7 @@ def init_par(
305303 init_scale [my_idx ] = init_model .b_var [init_idx ]
306304
307305 init_b = init_scale
308- logger .debug ("Using initialization based on input model for dispersion" )
306+ logging . getLogger ( "batchglm" ) .debug ("Using initialization based on input model for dispersion" )
309307
310308 return init_a , init_b
311309
0 commit comments