@@ -155,17 +155,17 @@ \subsection{Jacobian dispersion model}
155155\frac {d}{d \theta ^r_i} LL(y|\theta ^m, \theta ^r) &= \frac {d}{d \theta ^r_i} \log (\Gamma (r(\theta ^r)+y)) - \frac {d}{d \theta ^r_i} \log (y! \Gamma (r(\theta ^r))) \\
156156&+ y * \frac {d}{d \theta ^r_i} \bigg ( \log (m(\theta ^m)) -\log (r(\theta ^r)+m(\theta ^m)) \bigg ) \\
157157&+ \frac {d}{d \theta ^r_i} \bigg ( r(\theta ^r) * \bigg ( \log (r(\theta ^r)) - \log (r(\theta ^r)+m(\theta ^m)) \bigg ) \bigg ) \\
158- &= r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)+y)+ r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)) \\
158+ &= r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)+y) - r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)) \\
159159&- y*\frac {d}{d \theta ^r_i} \bigg ( \log (r(\theta ^r)+m(\theta ^m)) \bigg ) \\
160160&+ \frac {d}{d \theta ^r_i} \bigg ( r(\theta ^r)*\log (r(\theta ^r)) \bigg ) - \frac {d}{d \theta ^r_i} \bigg ( r(\theta ^r) \log (r(\theta ^r)+m(\theta ^m)) \bigg ) \\
161- &= r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)+y)+ r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)) \\
161+ &= r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)+y) - r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)) \\
162162&- y*\frac {1}{r(\theta ^r)+m(\theta ^m)} r(\theta ^r) * X^r_{i} \\
163163&+ \bigg ( r(\theta ^r) * X^r_{i} * \log (r(\theta ^r)) + r(\theta ^r) * r(\theta ^r) * X^r_{i} * \frac {1}{r(\theta ^r)} \bigg ) \\
164164&- \bigg (r(\theta ^r) * X^r_{i} * \log (r(\theta ^r)+m(\theta ^m)) + r(\theta ^r) * r(\theta ^r) * X^r_{i} * \frac {1}{r(\theta ^r)+m(\theta ^m)} \bigg ) \\
165- &= r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)+y)+ r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)) \\
165+ &= r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)+y)- r(\theta ^r) * X^r_{i} * \psi _0(r(\theta ^r)) \\
166166&- \frac {1}{r(\theta ^r)+m(\theta ^m)} r(\theta ^r) * X^r_{i} *(r(\theta ^r) + y) \\
167167&+ r(\theta ^r) * X^r_{i} * \bigg ( \log (r(\theta ^r)) + 1 - \log (r(\theta ^r)+m(\theta ^m)) \bigg ) \\
168- &= r(\theta ^r) * X^r_{i} * \bigg ( \psi _0(r(\theta ^r)+y)+ \psi _0(r(\theta ^r)) \\
168+ &= r(\theta ^r) * X^r_{i} * \bigg ( \psi _0(r(\theta ^r)+y)- \psi _0(r(\theta ^r)) \\
169169&- \frac {r(\theta ^r) + y}{r(\theta ^r)+m(\theta ^m)} + \log (r(\theta ^r)) + 1 - \log (r(\theta ^r)+m(\theta ^m)) \bigg ) \\
170170\end {split }
171171\end {equation }
0 commit comments