Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 7 additions & 3 deletions inst/WORDLIST
Original file line number Diff line number Diff line change
@@ -1,4 +1,8 @@
Lifecycle
tidymodels
cron
GH
GHA
PRs
cron
dev
repo
repos
tidymodels
4 changes: 2 additions & 2 deletions tests/testthat/_snaps/glmnet-linear.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
linear_reg(penalty = 0.01) %>% set_engine("glmnet") %>% fit(mpg ~ ., data = mtcars[
-(1:4), ]) %>% predict(mtcars[-(1:4), ], penalty = 0:1)
Condition
Error in `.check_glmnet_penalty_predict()`:
Error in `predict()`:
! `penalty` should be a single numeric value.
i `multi_predict()` can be used to get multiple predictions per row of data.

Expand All @@ -13,7 +13,7 @@
Code
linear_reg() %>% set_engine("glmnet") %>% fit(mpg ~ ., data = mtcars[-(1:4), ])
Condition
Error in `.check_glmnet_penalty_fit()`:
Error in `translate()`:
x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`).
! There are 0 values for `penalty`.
i To try multiple values for total regularization, use the tune package.
Expand Down
4 changes: 2 additions & 2 deletions tests/testthat/_snaps/glmnet-logistic.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
funded_amnt) + int_rate + term, data = lending_club) %>% predict(lending_club,
penalty = 0:1)
Condition
Error in `.check_glmnet_penalty_predict()`:
Error in `predict()`:
! `penalty` should be a single numeric value.
i `multi_predict()` can be used to get multiple predictions per row of data.

Expand All @@ -23,7 +23,7 @@
logistic_reg() %>% set_engine("glmnet") %>% fit(Class ~ log(funded_amnt) +
int_rate + term, data = lending_club)
Condition
Error in `.check_glmnet_penalty_fit()`:
Error in `translate()`:
x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`).
! There are 0 values for `penalty`.
i To try multiple values for total regularization, use the tune package.
Expand Down
4 changes: 2 additions & 2 deletions tests/testthat/_snaps/glmnet-multinom.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
multinom_reg(penalty = 0.01) %>% set_engine("glmnet") %>% fit(class ~ ., data = hpc_data) %>%
predict(hpc_data, penalty = 0:1)
Condition
Error in `.check_glmnet_penalty_predict()`:
Error in `predict()`:
! `penalty` should be a single numeric value.
i `multi_predict()` can be used to get multiple predictions per row of data.

Expand All @@ -21,7 +21,7 @@
Code
multinom_reg() %>% set_engine("glmnet") %>% fit(class ~ ., data = hpc_data)
Condition
Error in `.check_glmnet_penalty_fit()`:
Error in `translate()`:
x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`).
! There are 0 values for `penalty`.
i To try multiple values for total regularization, use the tune package.
Expand Down
4 changes: 2 additions & 2 deletions tests/testthat/_snaps/glmnet-poisson.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
Code
poisson_reg() %>% set_engine("glmnet") %>% fit(mpg ~ ., data = mtcars[-(1:4), ])
Condition
Error in `.check_glmnet_penalty_fit()`:
Error in `translate()`:
x For the glmnet engine, `penalty` must be a single number (or a value of `tune()`).
! There are 0 values for `penalty`.
i To try multiple values for total regularization, use the tune package.
Expand All @@ -15,7 +15,7 @@
poisson_reg(penalty = 0.1) %>% set_engine("glmnet") %>% fit(mpg ~ ., data = mtcars[
-(1:4), ]) %>% predict(mtcars[-(1:4), ], penalty = 0:1)
Condition
Error in `.check_glmnet_penalty_predict()`:
Error in `predict()`:
! `penalty` should be a single numeric value.
i `multi_predict()` can be used to get multiple predictions per row of data.

2 changes: 1 addition & 1 deletion tests/testthat/test-glmnet-linear.R
Original file line number Diff line number Diff line change
Expand Up @@ -265,7 +265,7 @@ test_that('multi_predict() with default or single penalty value', {

test_that('error traps', {
skip_if_not_installed("glmnet")
skip_if_not_installed("parsnip", minimum_version = "1.2.1.9002")
skip_if_not_installed("parsnip", minimum_version = "1.2.1.9003")

expect_snapshot(error = TRUE, {
linear_reg(penalty = 0.01) %>%
Expand Down
2 changes: 1 addition & 1 deletion tests/testthat/test-glmnet-logistic.R
Original file line number Diff line number Diff line change
Expand Up @@ -377,7 +377,7 @@ test_that("class predictions are factors with all levels", {

test_that('error traps', {
skip_if_not_installed("glmnet")
skip_if_not_installed("parsnip", minimum_version = "1.2.1.9002")
skip_if_not_installed("parsnip", minimum_version = "1.2.1.9003")

data("lending_club", package = "modeldata", envir = rlang::current_env())

Expand Down
2 changes: 1 addition & 1 deletion tests/testthat/test-glmnet-multinom.R
Original file line number Diff line number Diff line change
Expand Up @@ -399,7 +399,7 @@ test_that("class predictions are factors with all levels", {

test_that('error traps', {
skip_if_not_installed("glmnet")
skip_if_not_installed("parsnip", minimum_version = "1.2.1.9002")
skip_if_not_installed("parsnip", minimum_version = "1.2.1.9003")

data("hpc_data", package = "modeldata", envir = rlang::current_env())

Expand Down
3 changes: 1 addition & 2 deletions tests/testthat/test-glmnet-poisson.R
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@ library(poissonreg)

test_that("glmnet model object", {
skip_if_not_installed("glmnet")

data(seniors, package = "poissonreg", envir = rlang::current_env())
seniors_x <- model.matrix(~ ., data = seniors[, -4])[, -1]
seniors_y <- seniors$count
Expand Down Expand Up @@ -122,9 +121,9 @@ test_that("formula interface can deal with missing values", {
})

test_that("model errors on missing penalty value", {
skip_if_not_installed("parsnip", minimum_version = "1.2.1.9003")
skip_if_not_installed("glmnet")

skip_if_not_installed("parsnip", minimum_version = "1.2.1.9001")
expect_snapshot(error = TRUE, {
poisson_reg() %>%
set_engine("glmnet") %>%
Expand Down
Loading