Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

- Speed up `tidypredict_fit()` for partykit and ranger packages. (#125)

- Fixed bug where tidypredict would error on Cubist models without conditions. (#127)

- Speed up `tidypredict_fit()` for xxgboost models. (#130)

# tidypredict 0.5.1
Expand Down
4 changes: 4 additions & 0 deletions R/model-rf.R
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,10 @@ parse_model.randomForest <- function(model) {
}

path_formulas <- function(path) {
if (length(path) == 0) {
return(TRUE)
}

if (length(path) == 1 & path[[1]]$type == "all") {
rcl <- NULL
} else {
Expand Down
50 changes: 50 additions & 0 deletions tests/testthat/_snaps/model-cubist.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# Returns expected dplyr formula

Code
rlang::expr_text(tf)
Output
[1] "(ifelse(nox >= 0.668, -1.11 + crim * -0.02 + nox * 21.4 + rm * \n 0.1 + age * -0.003 + dis * 2.93 + ptratio * -0.13 + b * 0.008 + \n lstat * -0.33, 0) + ifelse(lstat >= 9.59 & nox < 0.668, 23.57 + \n crim * 0.05 + nox * -5.2 + rm * 3.1 + age * -0.048 + dis * \n -0.81 + rad * 0.02 + tax * -0.0041 + ptratio * -0.71 + b * \n 0.01 + lstat * -0.15, 0) + ifelse(lstat < 9.59 & rm < 6.226, \n 1.18 + crim * 3.83 + rm * 4.3 + age * -0.06 + dis * -0.09 + \n tax * -0.003 + ptratio * -0.08 + lstat * -0.11, 0) + \n ifelse(lstat < 9.59 & rm >= 6.226, -4.71 + crim * 2.22 + \n zn * 0.008 + nox * -1.7 + rm * 9.2 + age * -0.04 + dis * \n -0.71 + rad * 0.03 + tax * -0.0182 + ptratio * -0.72 + \n lstat * -0.83, 0) + ifelse(dis < 1.755 & lstat >= 5.12, \n 122.32 + crim * -0.29 + nox * -21.6 + rm * -3 + dis * -30.88 + \n rad * 0.02 + tax * -0.001 + b * -0.023 + lstat * -0.73, \n 0) + ifelse(rm < 6.545 & lstat >= 5.12, 27.8 + crim * -0.16 + \n zn * 0.007 + nox * -3.9 + rm * 2 + age * -0.035 + dis * -0.7 + \n rad * 0.28 + tax * -0.0135 + ptratio * -0.6 + b * 0.013 + \n lstat * -0.25, 0) + ifelse(rm >= 6.545 & lstat >= 5.12, 22.21 + \n crim * -0.04 + zn * 0.01 + indus * -0.02 + nox * -4 + rm * \n 4.7 + dis * -0.34 + rad * 0.11 + tax * -0.0248 + ptratio * \n -0.9 + b * 0.002 + lstat * -0.1, 0) + ifelse(lstat < 5.12 & \n rm < 8.034, -71.95 + rm * 17 + age * -0.06 + tax * -0.0112 + \n ptratio * -0.48 + lstat * -0.03, 0) + ifelse(rm >= 8.034 & \n dis >= 3.199, -32.79 + crim * -0.01 + zn * 0.005 + nox * \n -1.8 + rm * 12.9 + age * -0.117 + dis * -0.15 + rad * 0.04 + \n tax * -0.0246 + ptratio * -1.05 + lstat * -0.04, 0) + ifelse(lstat < \n 5.12 & dis < 3.199, 53.41 + rm * 1.6 + dis * -7.16 + tax * \n 0.0088 + lstat * -0.68, 0) + ifelse(nox >= 0.668, -36.31 + \n crim * 0.08 + nox * 48.4 + dis * 7.52 + b * 0.01 + lstat * \n -0.24, 0) + ifelse(lstat >= 9.53 & nox < 0.668, 28.04 + nox * \n -4.8 + rm * 2.9 + age * -0.051 + dis * -0.86 + rad * 0.01 + \n tax * -0.0019 + ptratio * -0.72 + lstat * -0.12, 0) + ifelse(lstat < \n 9.53, -26.05 + crim * 0.89 + nox * -2.3 + rm * 9.6 + dis * \n -0.17 + rad * 0.02 + tax * -0.0055 + ptratio * -0.12 + b * \n 0.001 + lstat * -0.74, 0) + ifelse(lstat < 9.53 & dis < 2.64, \n 136.67 + crim * 7.2 + nox * -96.6 + rm * 1.1 + tax * -0.0033 + \n ptratio * -3.31 + lstat * -0.1, 0))/3"

# Model can be saved and re-loaded

Code
tidypredict_fit(pm)
Output
(ifelse(nox >= 0.668, -1.11 + crim * -0.02 + nox * 21.4 + rm *
0.1 + age * -0.003 + dis * 2.93 + ptratio * -0.13 + b * 0.008 +
lstat * -0.33, 0) + ifelse(lstat >= 9.59 & nox < 0.668, 23.57 +
crim * 0.05 + nox * -5.2 + rm * 3.1 + age * -0.048 + dis *
-0.81 + rad * 0.02 + tax * -0.0041 + ptratio * -0.71 + b *
0.01 + lstat * -0.15, 0) + ifelse(lstat < 9.59 & rm < 6.226,
1.18 + crim * 3.83 + rm * 4.3 + age * -0.06 + dis * -0.09 +
tax * -0.003 + ptratio * -0.08 + lstat * -0.11, 0) +
ifelse(lstat < 9.59 & rm >= 6.226, -4.71 + crim * 2.22 +
zn * 0.008 + nox * -1.7 + rm * 9.2 + age * -0.04 + dis *
-0.71 + rad * 0.03 + tax * -0.0182 + ptratio * -0.72 +
lstat * -0.83, 0) + ifelse(dis < 1.755 & lstat >= 5.12,
122.32 + crim * -0.29 + nox * -21.6 + rm * -3 + dis * -30.88 +
rad * 0.02 + tax * -0.001 + b * -0.023 + lstat * -0.73,
0) + ifelse(rm < 6.545 & lstat >= 5.12, 27.8 + crim * -0.16 +
zn * 0.007 + nox * -3.9 + rm * 2 + age * -0.035 + dis * -0.7 +
rad * 0.28 + tax * -0.0135 + ptratio * -0.6 + b * 0.013 +
lstat * -0.25, 0) + ifelse(rm >= 6.545 & lstat >= 5.12, 22.21 +
crim * -0.04 + zn * 0.01 + indus * -0.02 + nox * -4 + rm *
4.7 + dis * -0.34 + rad * 0.11 + tax * -0.0248 + ptratio *
-0.9 + b * 0.002 + lstat * -0.1, 0) + ifelse(lstat < 5.12 &
rm < 8.034, -71.95 + rm * 17 + age * -0.06 + tax * -0.0112 +
ptratio * -0.48 + lstat * -0.03, 0) + ifelse(rm >= 8.034 &
dis >= 3.199, -32.79 + crim * -0.01 + zn * 0.005 + nox *
-1.8 + rm * 12.9 + age * -0.117 + dis * -0.15 + rad * 0.04 +
tax * -0.0246 + ptratio * -1.05 + lstat * -0.04, 0) + ifelse(lstat <
5.12 & dis < 3.199, 53.41 + rm * 1.6 + dis * -7.16 + tax *
0.0088 + lstat * -0.68, 0) + ifelse(nox >= 0.668, -36.31 +
crim * 0.08 + nox * 48.4 + dis * 7.52 + b * 0.01 + lstat *
-0.24, 0) + ifelse(lstat >= 9.53 & nox < 0.668, 28.04 + nox *
-4.8 + rm * 2.9 + age * -0.051 + dis * -0.86 + rad * 0.01 +
tax * -0.0019 + ptratio * -0.72 + lstat * -0.12, 0) + ifelse(lstat <
9.53, -26.05 + crim * 0.89 + nox * -2.3 + rm * 9.6 + dis *
-0.17 + rad * 0.02 + tax * -0.0055 + ptratio * -0.12 + b *
0.001 + lstat * -0.74, 0) + ifelse(lstat < 9.53 & dis < 2.64,
136.67 + crim * 7.2 + nox * -96.6 + rm * 1.1 + tax * -0.0033 +
ptratio * -3.31 + lstat * -0.1, 0))/3

13 changes: 13 additions & 0 deletions tests/testthat/test-model-cubist.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,3 +25,16 @@ test_that("Model can be saved and re-loaded", {
pm <- as_parsed_model(l)
expect_snapshot(tidypredict_fit(pm))
})

test_that("Model can be saved and re-loaded", {
model <- Cubist::cubist(
x = BostonHousing[, -14],
y = BostonHousing$medv,
committees = 2,
control = Cubist::cubistControl(rules = 1)
)
tf <- tidypredict_fit(model)
expect_no_error(
parse_model(model)
)
})