Skip to content

tinayiluo0322/ad-dfc-signatures

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Topological and geometric signatures of brain network dynamics in Alzheimer’s disease (Alzheimer's & Dementia Journal)

This repository contains the code accompanying the paper:

Topological and geometric signatures of brain network dynamics in Alzheimer’s disease

🔗 Read the full open‐access paper here: https://doi.org/10.1002/alz.70545

Overview

This work presents a novel permutation-based framework to identify topological and geometric biomarkers of Alzheimer’s disease (AD) using dynamic functional connectivity (dFC) derived from resting-state fMRI data.

The repository includes:

  • Data Preprocessing
  • Dynamic Connectivity Matrix Construction
  • Distance-Based Time Series Generation
  • Permutation Testing Across Diagnostic Groups and Sexes

Folder Structure

├── Data-Preprocessing/
│   ├── fmriprep_simg.sh             # Runs fMRIPrep using Singularity
│   ├── generate_conn_matrices.py    # Generates connectivity matrices from preprocessed data
│   └── process_raw.sh               # Processes raw BIDS-formatted data
│
├── ConnectivityPipeline/
│   ├── extract_distance.py          # Computes distance metrics (e.g., Wasserstein, spectral)
│   └── Process_sliding_window.py    # Implements sliding-window dFC computation
│
├── PermutationTest/
│   ├── oasis_5peak_permutation.py   # Permutation test using 5-peak-based features
│   └── oasis_mean_permutation.py    # Permutation test using mean-based features
│
├── requirements.txt                 # Python dependencies

Requirements

This project relies on a combination of Python packages and neuroimaging tools for preprocessing, connectivity analysis, and statistical testing. SLURM job scripts are included for HPC environments.

Python Packages

To install all core dependencies:

pip install -r requirements.txt

Or install them individually:

  • numpy
  • pandas
  • matplotlib
  • seaborn
  • scipy
  • scikit-learn
  • tqdm
  • nibabel
  • nilearn
  • networkx

Note: Some scripts also use google.colab for mounting Google Drive.

Optional / Environment-Specific Tools

  • fMRIPrep (required for anatomical preprocessing)
  • Install via Singularity or Docker
  • SLURM workload manager (for HPC job scheduling)
  • Shell (bash) and SBATCH scripts for parallel job submission

System Requirements

  • Python 3.8+
  • 16–32 GB RAM recommended for full pipeline execution
  • Access to BIDS-formatted resting-state fMRI data

Citation

If you use this code, please cite:

@article{yi2025topological,
  title={Topological and geometric signatures of brain network dynamics in {A}lzheimer's disease},
  author={Yi, Luopeiwen and Lutz, Michael William and Wu, Yutong and Li, Yang and Songdechakraiwut, Tananun},
  journal={Alzheimer's \& Dementia},
  volume={21},
  number={8},
  pages={e70545},
  doi = {https://doi.org/10.1002/alz.70545},
  url = {https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/alz.70545},
  eprint = {https://alz-journals.onlinelibrary.wiley.com/doi/pdf/10.1002/alz.70545},
  year={2025}
}

License

This project is licensed under the MIT License. See the LICENSE file for details.

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •