In the code subfolder, you will find all the tutorial notebooks
code/
│
├── 00 - Hold-out example with scikit-learn.ipynb # Basic hold-out method example using scikit-learn
├── 01 - Introduction_to_keras_tuner.ipynb # Introductory guide to Keras Tuner
├── 02 - Easy_Network_with_Keras.ipynb # Simple neural network with Keras
├── 03 - hyperparameter_tuning_with_scikit_learn.ipynb # Hyperparameter tuning using scikit-learn
├── 04 - Exercise_Supervised_Learning_2.ipynb # Supervised learning exercise
├── 05 - Converting_a_model_with_TF_Lite_converter.ipynb # Converting models with TensorFlow Lite converter
├── 06 - Quantization_of_models_Complete_examples.ipynb # Model quantization examples
├── 07 - Retrain_MobileNet_V2_classifier_for_the_Edge_TPU.ipynb # Retraining MobileNetV2 for Edge TPU
All notebooks demonstrate different machine learning techniques, covering fundamental concepts like model training, tuning, conversion, and deployment.
All notebooks are designe to un primarily on colab, you will find a run on colab at the beggining of each notebook.
The notebook can be run on your local machine. Note : this is subject to more bugs and changes.
- Open a terminal or command prompt.
- Run the following command:
conda create -n ml_notebooks python=3.12
- Activate the environment:
conda activate ml_notebooks
- Install dependencies:
pip install -r requirements.txt
- Ensure dependencies are installed:
pip list
- Test the notebooks in Jupyter:
jupyter notebook
- Ensure TensorFlow and scikit-learn versions match your hardware setup.
- Additional dependencies may be required for Edge TPU support.
- If you face installation issues, update pip and conda before retrying.