Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ build-backend = "poetry.masonry.api"

[tool.poetry]
name = "together"
version = "1.5.1"
version = "1.5.2"
authors = [
"Together AI <[email protected]>"
]
Expand Down
18 changes: 17 additions & 1 deletion src/together/cli/api/finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,17 +79,29 @@ def fine_tuning(ctx: click.Context) -> None:
"--batch-size", "-b", type=INT_WITH_MAX, default="max", help="Train batch size"
)
@click.option("--learning-rate", "-lr", type=float, default=1e-5, help="Learning rate")
@click.option(
"--lr-scheduler-type",
type=click.Choice(["linear", "cosine"]),
default="linear",
help="Learning rate scheduler type",
)
@click.option(
"--min-lr-ratio",
type=float,
default=0.0,
help="The ratio of the final learning rate to the peak learning rate",
)
@click.option(
"--scheduler-num-cycles",
type=float,
default=0.5,
help="Number or fraction of cycles for the cosine learning rate scheduler.",
)
@click.option(
"--warmup-ratio",
type=float,
default=0.0,
help="Warmup ratio for learning rate scheduler.",
help="Warmup ratio for the learning rate scheduler.",
)
@click.option(
"--max-grad-norm",
Expand Down Expand Up @@ -174,7 +186,9 @@ def create(
n_checkpoints: int,
batch_size: int | Literal["max"],
learning_rate: float,
lr_scheduler_type: Literal["linear", "cosine"],
min_lr_ratio: float,
scheduler_num_cycles: float,
warmup_ratio: float,
max_grad_norm: float,
weight_decay: float,
Expand Down Expand Up @@ -206,7 +220,9 @@ def create(
n_checkpoints=n_checkpoints,
batch_size=batch_size,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
min_lr_ratio=min_lr_ratio,
scheduler_num_cycles=scheduler_num_cycles,
warmup_ratio=warmup_ratio,
max_grad_norm=max_grad_norm,
weight_decay=weight_decay,
Expand Down
41 changes: 35 additions & 6 deletions src/together/resources/finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,10 @@
TogetherRequest,
TrainingType,
FinetuneLRScheduler,
FinetuneLinearLRScheduler,
FinetuneCosineLRScheduler,
FinetuneLinearLRSchedulerArgs,
FinetuneCosineLRSchedulerArgs,
TrainingMethodDPO,
TrainingMethodSFT,
FinetuneCheckpoint,
Expand Down Expand Up @@ -57,7 +60,9 @@ def createFinetuneRequest(
n_checkpoints: int | None = 1,
batch_size: int | Literal["max"] = "max",
learning_rate: float | None = 0.00001,
lr_scheduler_type: Literal["linear", "cosine"] = "linear",
min_lr_ratio: float = 0.0,
scheduler_num_cycles: float = 0.5,
warmup_ratio: float = 0.0,
max_grad_norm: float = 1.0,
weight_decay: float = 0.0,
Expand Down Expand Up @@ -134,10 +139,22 @@ def createFinetuneRequest(
f"training_method must be one of {', '.join(AVAILABLE_TRAINING_METHODS)}"
)

lrScheduler = FinetuneLRScheduler(
lr_scheduler_type="linear",
lr_scheduler_args=FinetuneLinearLRSchedulerArgs(min_lr_ratio=min_lr_ratio),
)
# Default to generic lr scheduler
lrScheduler: FinetuneLRScheduler = FinetuneLRScheduler(lr_scheduler_type="linear")

if lr_scheduler_type == "cosine":
if scheduler_num_cycles <= 0.0:
raise ValueError("Number of cycles should be greater than 0")

lrScheduler = FinetuneCosineLRScheduler(
lr_scheduler_args=FinetuneCosineLRSchedulerArgs(
min_lr_ratio=min_lr_ratio, num_cycles=scheduler_num_cycles
),
)
else:
lrScheduler = FinetuneLinearLRScheduler(
lr_scheduler_args=FinetuneLinearLRSchedulerArgs(min_lr_ratio=min_lr_ratio),
)

training_method_cls: TrainingMethodSFT | TrainingMethodDPO = TrainingMethodSFT()
if training_method == "dpo":
Expand Down Expand Up @@ -249,7 +266,9 @@ def create(
n_checkpoints: int | None = 1,
batch_size: int | Literal["max"] = "max",
learning_rate: float | None = 0.00001,
lr_scheduler_type: Literal["linear", "cosine"] = "linear",
min_lr_ratio: float = 0.0,
scheduler_num_cycles: float = 0.5,
warmup_ratio: float = 0.0,
max_grad_norm: float = 1.0,
weight_decay: float = 0.0,
Expand Down Expand Up @@ -284,9 +303,11 @@ def create(
batch_size (int or "max"): Batch size for fine-tuning. Defaults to max.
learning_rate (float, optional): Learning rate multiplier to use for training
Defaults to 0.00001.
lr_scheduler_type (Literal["linear", "cosine"]): Learning rate scheduler type. Defaults to "linear".
min_lr_ratio (float, optional): Min learning rate ratio of the initial learning rate for
the learning rate scheduler. Defaults to 0.0.
warmup_ratio (float, optional): Warmup ratio for learning rate scheduler.
scheduler_num_cycles (float, optional): Number or fraction of cycles for the cosine learning rate scheduler. Defaults to 0.5.
warmup_ratio (float, optional): Warmup ratio for the learning rate scheduler.
max_grad_norm (float, optional): Max gradient norm. Defaults to 1.0, set to 0 to disable.
weight_decay (float, optional): Weight decay. Defaults to 0.0.
lora (bool, optional): Whether to use LoRA adapters. Defaults to True.
Expand Down Expand Up @@ -353,7 +374,9 @@ def create(
n_checkpoints=n_checkpoints,
batch_size=batch_size,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
min_lr_ratio=min_lr_ratio,
scheduler_num_cycles=scheduler_num_cycles,
warmup_ratio=warmup_ratio,
max_grad_norm=max_grad_norm,
weight_decay=weight_decay,
Expand Down Expand Up @@ -634,7 +657,9 @@ async def create(
n_checkpoints: int | None = 1,
batch_size: int | Literal["max"] = "max",
learning_rate: float | None = 0.00001,
lr_scheduler_type: Literal["linear", "cosine"] = "linear",
min_lr_ratio: float = 0.0,
scheduler_num_cycles: float = 0.5,
warmup_ratio: float = 0.0,
max_grad_norm: float = 1.0,
weight_decay: float = 0.0,
Expand Down Expand Up @@ -669,9 +694,11 @@ async def create(
batch_size (int, optional): Batch size for fine-tuning. Defaults to max.
learning_rate (float, optional): Learning rate multiplier to use for training
Defaults to 0.00001.
lr_scheduler_type (Literal["linear", "cosine"]): Learning rate scheduler type. Defaults to "linear".
min_lr_ratio (float, optional): Min learning rate ratio of the initial learning rate for
the learning rate scheduler. Defaults to 0.0.
warmup_ratio (float, optional): Warmup ratio for learning rate scheduler.
scheduler_num_cycles (float, optional): Number or fraction of cycles for the cosine learning rate scheduler. Defaults to 0.5.
warmup_ratio (float, optional): Warmup ratio for the learning rate scheduler.
max_grad_norm (float, optional): Max gradient norm. Defaults to 1.0, set to 0 to disable.
weight_decay (float, optional): Weight decay. Defaults to 0.0.
lora (bool, optional): Whether to use LoRA adapters. Defaults to True.
Expand Down Expand Up @@ -738,7 +765,9 @@ async def create(
n_checkpoints=n_checkpoints,
batch_size=batch_size,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
min_lr_ratio=min_lr_ratio,
scheduler_num_cycles=scheduler_num_cycles,
warmup_ratio=warmup_ratio,
max_grad_norm=max_grad_norm,
weight_decay=weight_decay,
Expand Down
8 changes: 7 additions & 1 deletion src/together/types/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,11 +34,14 @@
TrainingMethodDPO,
TrainingMethodSFT,
FinetuneCheckpoint,
FinetuneCosineLRScheduler,
FinetuneCosineLRSchedulerArgs,
FinetuneDownloadResult,
FinetuneLinearLRScheduler,
FinetuneLinearLRSchedulerArgs,
FinetuneLRScheduler,
FinetuneList,
FinetuneListEvents,
FinetuneLRScheduler,
FinetuneRequest,
FinetuneResponse,
FinetuneTrainingLimits,
Expand Down Expand Up @@ -69,7 +72,10 @@
"FinetuneListEvents",
"FinetuneDownloadResult",
"FinetuneLRScheduler",
"FinetuneLinearLRScheduler",
"FinetuneLinearLRSchedulerArgs",
"FinetuneCosineLRScheduler",
"FinetuneCosineLRSchedulerArgs",
"FileRequest",
"FileResponse",
"FileList",
Expand Down
28 changes: 21 additions & 7 deletions src/together/types/finetune.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
from __future__ import annotations

from enum import Enum
from typing import List, Literal
from typing import List, Literal, Union

from pydantic import StrictBool, Field, validator, field_validator
from pydantic import StrictBool, Field, validator, field_validator, ValidationInfo

from together.types.abstract import BaseModel
from together.types.common import (
Expand Down Expand Up @@ -176,7 +176,7 @@ class FinetuneRequest(BaseModel):
# training learning rate
learning_rate: float
# learning rate scheduler type and args
lr_scheduler: FinetuneLRScheduler | None = None
lr_scheduler: FinetuneLinearLRScheduler | FinetuneCosineLRScheduler | None = None
# learning rate warmup ratio
warmup_ratio: float
# max gradient norm
Expand Down Expand Up @@ -239,7 +239,7 @@ class FinetuneResponse(BaseModel):
# training learning rate
learning_rate: float | None = None
# learning rate scheduler type and args
lr_scheduler: FinetuneLRScheduler | None = None
lr_scheduler: FinetuneLinearLRScheduler | FinetuneCosineLRScheduler | None = None
# learning rate warmup ratio
warmup_ratio: float | None = None
# max gradient norm
Expand Down Expand Up @@ -345,13 +345,27 @@ class FinetuneTrainingLimits(BaseModel):
lora_training: FinetuneLoraTrainingLimits | None = None


class FinetuneLinearLRSchedulerArgs(BaseModel):
min_lr_ratio: float | None = 0.0


class FinetuneCosineLRSchedulerArgs(BaseModel):
min_lr_ratio: float | None = 0.0
num_cycles: float | None = 0.5


class FinetuneLRScheduler(BaseModel):
lr_scheduler_type: str
lr_scheduler_args: FinetuneLinearLRSchedulerArgs | None = None


class FinetuneLinearLRSchedulerArgs(BaseModel):
min_lr_ratio: float | None = 0.0
class FinetuneLinearLRScheduler(FinetuneLRScheduler):
lr_scheduler_type: Literal["linear"] = "linear"
lr_scheduler: FinetuneLinearLRSchedulerArgs | None = None


class FinetuneCosineLRScheduler(FinetuneLRScheduler):
lr_scheduler_type: Literal["cosine"] = "cosine"
lr_scheduler: FinetuneCosineLRSchedulerArgs | None = None


class FinetuneCheckpoint(BaseModel):
Expand Down