本项目是基于SeetaFace6开源人脸识别引擎的Java SDK封装,提供了完整的Java API接口,支持:
- ✅ 跨平台支持:Windows 7/10/11, Linux (x86_64, aarch64, arm)
- ✅ 多架构兼容:amd64, aarch64, arm
- ✅ GPU加速:支持CUDA (需CUDA 11.6.2)
- ✅ JDK兼容:JDK 8-14
- ✅ 对象池管理:基于Apache Commons Pool2的线程安全对象池
- ✅ 三层架构:SDK → Proxy → Pool 高性能架构模式
┌─────────────────────────────────────┐
│ 应用层 (Application) │
│ Spring Boot / 其他Java应用 │
└─────────────┬───────────────────────┘
│
┌─────────────▼───────────────────────┐
│ 代理层 (Proxy Layer) │
│ 简化API调用,自动对象池管理 │
│ FaceDetectorProxy │
│ FaceRecognizerProxy │
│ FaceLandmarkerProxy │
└─────────────┬───────────────────────┘
│
┌─────────────▼───────────────────────┐
│ 池层 (Pool Layer) │
│ 线程安全的对象池管理 │
│ FaceDetectorPool │
│ FaceRecognizerPool │
│ FaceLandmarkerPool │
└─────────────┬───────────────────────┘
│
┌─────────────▼───────────────────────┐
│ SDK层 (SDK Layer) │
│ 原生JNI接口封装 │
│ FaceDetector │
│ FaceRecognizer │
│ FaceLandmarker │
└─────────────────────────────────────┘
| 功能模块 | 功能描述 | 核心类 | 支持模型 |
|---|---|---|---|
| 人脸检测 | 检测图像中的人脸位置,返回矩形框坐标 | FaceDetector |
face_detector.csta |
| 人脸识别 | 提取人脸特征向量,计算相似度 | FaceRecognizer |
face_recognizer.csta face_recognizer_mask.csta face_recognizer_light.csta |
| 人脸关键点 | 定位人脸5点或68点特征点 | FaceLandmarker |
face_landmarker_pts5.csta face_landmarker_pts68.csta |
| 人脸跟踪 | 实时跟踪视频中的人脸 | FaceTracker |
face_detector.csta |
| 年龄估计 | 预测人脸年龄 | AgePredictor |
age_predictor.csta |
| 性别识别 | 判断人脸性别 | GenderPredictor |
gender_predictor.csta |
| 口罩检测 | 检测是否佩戴口罩 | MaskDetector |
mask_detector.csta |
| 眼睛状态 | 检测眼睛睁开/闭合状态 | EyeStateDetector |
eye_state.csta |
| 姿态估计 | 评估人脸姿态角度 | PoseEstimator |
pose_estimation.csta |
| 质量评估 | 评估图像质量(清晰度、亮度等) | QualityOf* |
quality_lbn.csta |
| 活体检测 | 防伪检测,识别真实人脸 | FaceAntiSpoofing |
fas_first.csta fas_second.csta |
| 遮挡评估 | 评估人脸遮挡情况 | LandmarkerMask |
face_landmarker_mask_pts5.csta |
- JDK: 8 - 14
- Maven: 3.6+
- OS: Windows 7/10/11 或 Linux
- CUDA: 11.6.2
- Driver: 512.15
- GPU: NVIDIA CUDA-enabled GPU
# 模型文件下载链接
# 链接1: https://pan.baidu.com/s/1LlXe2-YsUxQMe-MLzhQ2Aw 提取码:ngne
# 链接2: https://pan.baidu.com/s/1xjciq-lkzEBOZsTfVYAT9g 提取码:t6j0
# 解压后放置到指定目录,例如:
D:\face\models\
├── face_detector.csta
├── face_recognizer.csta
├── face_landmarker_pts5.csta
└── ... (其他模型文件)编辑 src/test/java/com/seeta/sdk/FileConstant.java:
public class FileConstant {
// 模型文件路径
public static final String CSTA_PATH = "D:\\face\\models";
// 测试图片路径
public static final String TEST_PICT = "D:\\face\\image\\me\\00.jpg";
// 具体模型文件
public static final String face_detector = CSTA_PATH + "\\face_detector.csta";
public static final String face_recognizer = CSTA_PATH + "\\face_recognizer.csta";
public static final String face_landmarker_pts5 = CSTA_PATH + "\\face_landmarker_pts5.csta";
// ... 其他模型路径
}# 编译项目
mvn clean package
# 安装到本地仓库
mvn installimport com.seeta.sdk.*;
public class QuickStart {
public static void main(String[] args) throws Exception {
// 1. 加载本地库
LoadNativeCore.LOAD_NATIVE(SeetaDevice.SEETA_DEVICE_CPU);
// 2. 初始化模型
SeetaModelSetting setting = new SeetaModelSetting(
new String[]{FileConstant.face_detector},
SeetaDevice.SEETA_DEVICE_CPU
);
// 3. 创建检测器
FaceDetector detector = new FaceDetector(setting);
// 4. 加载图片
SeetaImageData image = SeetafaceUtil.toSeetaImageData("path/to/image.jpg");
// 5. 检测人脸
SeetaRect[] faces = detector.Detect(image);
System.out.println("检测到 " + faces.length + " 个人脸");
// 6. 释放资源
detector.dispose();
}
}import com.seeta.pool.SeetaConfSetting;
import com.seeta.proxy.*;
public class ProxyExample {
// 配置对象池
static SeetaConfSetting detectorSetting = new SeetaConfSetting(
new SeetaModelSetting(FileConstant.face_detector, SeetaDevice.SEETA_DEVICE_CPU)
);
// 创建代理
static FaceDetectorProxy detectorProxy = new FaceDetectorProxy(detectorSetting);
public static void main(String[] args) throws Exception {
LoadNativeCore.LOAD_NATIVE(SeetaDevice.SEETA_DEVICE_CPU);
SeetaImageData image = SeetafaceUtil.toSeetaImageData("path/to/image.jpg");
// 直接调用,无需手动管理对象生命周期
SeetaRect[] faces = detectorProxy.detect(image);
System.out.println("检测到 " + faces.length + " 个人脸");
}
}@Configuration
public class SeetaFaceConfig {
@Value("${seeta.model.path}")
private String modelPath;
@Bean
public FaceDetectorProxy faceDetector() throws Exception {
SeetaConfSetting setting = new SeetaConfSetting(
new SeetaModelSetting(modelPath + "/face_detector.csta", SeetaDevice.SEETA_DEVICE_CPU)
);
return new FaceDetectorProxy(setting);
}
@Bean
public FaceRecognizerProxy faceRecognizer() throws Exception {
SeetaConfSetting setting = new SeetaConfSetting(
new SeetaModelSetting(modelPath + "/face_recognizer.csta", SeetaDevice.SEETA_DEVICE_CPU)
);
return new FaceRecognizerProxy(setting);
}
@Bean
public FaceLandmarkerProxy faceLandmarker() throws Exception {
SeetaConfSetting setting = new SeetaConfSetting(
new SeetaModelSetting(modelPath + "/face_landmarker_pts5.csta", SeetaDevice.SEETA_DEVICE_CPU)
);
return new FaceLandmarkerProxy(setting);
}
}public enum SeetaDevice {
SEETA_DEVICE_AUTO, // 自动检测
SEETA_DEVICE_CPU, // CPU设备
SEETA_DEVICE_GPU // GPU设备
}// 构造函数
public SeetaModelSetting(int id, String[] models, SeetaDevice dev)
// 示例:CPU模式
SeetaModelSetting cpuSetting = new SeetaModelSetting(
0,
new String[]{"model.csta"},
SeetaDevice.SEETA_DEVICE_CPU
);
// 示例:GPU模式
SeetaModelSetting gpuSetting = new SeetaModelSetting(
0, // GPU ID
new String[]{"model.csta"},
SeetaDevice.SEETA_DEVICE_GPU
);public class SeetaImageData {
public int width; // 图像宽度
public int height; // 图像高度
public int channels; // 图像通道数 (1=灰度, 3=彩色)
public byte[] data; // 像素数据
}
// 从文件创建
SeetaImageData image = SeetafaceUtil.toSeetaImageData("image.jpg");public class SeetaRect {
public int x; // 左上角x坐标
public int y; // 左上角y坐标
public int width; // 宽度
public int height; // 高度
}public class SeetaPointF {
public double x; // x坐标
public double y; // y坐标
}public class FaceDetector {
// 构造方法
public FaceDetector(SeetaModelSetting setting) throws Exception
// 检测人脸
public SeetaRect[] Detect(SeetaImageData image)
// 设置属性
public void set(Property property, double value)
// 获取属性
public double get(Property property)
// 释放资源
public void dispose()
}
// Property枚举
public enum Property {
PROPERTY_MIN_FACE_SIZE(0), // 最小人脸尺寸
PROPERTY_THRESHOLD(1), // 检测阈值
PROPERTY_MAX_IMAGE_WIDTH(2), // 最大图像宽度
PROPERTY_MAX_IMAGE_HEIGHT(3), // 最大图像高度
PROPERTY_NUMBER_THREADS(4), // 线程数
PROPERTY_ARM_CPU_MODE(0x101) // ARM CPU模式
}
// 使用示例
FaceDetector detector = new FaceDetector(setting);
detector.set(FaceDetector.Property.PROPERTY_MIN_FACE_SIZE, 50);
detector.set(FaceDetector.Property.PROPERTY_THRESHOLD, 0.7);
SeetaRect[] faces = detector.Detect(image);public class FaceRecognizer {
// 提取特征
public boolean Extract(SeetaImageData image, SeetaPointF[] points, float[] features)
// 计算相似度
public float CalculateSimilarity(float[] features1, float[] features2)
// 裁剪人脸
public boolean CropFaceV2(SeetaImageData image, SeetaPointF[] points, SeetaImageData face)
// 获取特征向量长度
public int GetExtractFeatureSize()
// 获取裁剪人脸尺寸
public int GetCropFaceWidthV2()
public int GetCropFaceHeightV2()
public int GetCropFaceChannelsV2()
}
// 使用示例
FaceRecognizer recognizer = new FaceRecognizer(setting);
float[] features1 = new float[recognizer.GetExtractFeatureSize()];
float[] features2 = new float[recognizer.GetExtractFeatureSize()];
recognizer.Extract(image1, points1, features1);
recognizer.Extract(image2, points2, features2);
float similarity = recognizer.CalculateSimilarity(features1, features2);
System.out.println("相似度: " + similarity);
// 相似度阈值判断
if (similarity > 0.62) {
System.out.println("同一个人");
} else {
System.out.println("不同的人");
}public class FaceLandmarker {
// 构造方法
public FaceLandmarker(SeetaModelSetting setting)
// 获取关键点数量
public int number()
// 标记关键点
public void mark(SeetaImageData imageData, SeetaRect seetaRect, SeetaPointF[] pointFS)
// 标记关键点(含遮挡信息)
public void mark(SeetaImageData imageData, SeetaRect seetaRect, SeetaPointF[] pointFS, int[] masks)
// 释放资源
public void dispose()
}
// 使用示例
FaceLandmarker landmarker = new FaceLandmarker(setting);
int pointCount = landmarker.number(); // 5或68
SeetaPointF[] points = new SeetaPointF[pointCount];
landmarker.mark(image, faceRect, points);public class AgePredictor {
// 直接预测年龄(需要先裁剪)
public boolean PredictAge(SeetaImageData face, int[] age)
// 预测年龄(含裁剪)
public boolean PredictAgeWithCrop(SeetaImageData image, SeetaPointF[] points, int[] age)
// Java风格方法
public Integer predictAgeWithCrop(SeetaImageData image, SeetaPointF[] points)
// 获取裁剪人脸尺寸
public int GetCropFaceWidth()
public int GetCropFaceHeight()
public int GetCropFaceChannels()
// 裁剪人脸
public boolean CropFace(SeetaImageData image, SeetaPointF[] points, SeetaImageData face)
}
// 使用示例
AgePredictor agePredictor = new AgePredictor(setting);
Integer age = agePredictor.predictAgeWithCrop(image, points);
System.out.println("预测年龄: " + age);public class GenderPredictor {
public GenderPredictor(SeetaModelSetting setting)
public boolean PredictGender(SeetaImageData face, int[] gender)
public boolean PredictGenderWithCrop(SeetaImageData image, SeetaPointF[] points, int[] gender)
public Integer predictGenderWithCrop(SeetaImageData image, SeetaPointF[] points)
public boolean CropFace(SeetaImageData image, SeetaPointF[] points, SeetaImageData face)
public int GetCropFaceWidth()
public int GetCropFaceHeight()
public int GetCropFaceChannels()
}
// gender值:0=女性, 1=男性
Integer gender = genderPredictor.predictGenderWithCrop(image, points);
System.out.println("预测性别: " + (gender == 1 ? "男性" : "女性"));public class MaskDetector {
public MaskDetector(SeetaModelSetting setting) throws Exception
// 检测口罩
// @param score 置信度(返回),score[0] > 0.5 表示戴口罩
public boolean detect(SeetaImageData imageData, SeetaRect face, float[] score)
}
// 使用示例
MaskDetector maskDetector = new MaskDetector(setting);
float[] score = new float[1];
boolean hasMask = maskDetector.detect(image, faceRect, score);
System.out.println("置信度: " + score[0]);
System.out.println(hasMask ? "戴口罩" : "未戴口罩");public class EyeStateDetector {
public EyeStateDetector(SeetaModelSetting setting)
// 检测眼睛状态
// @param eyeStates 返回眼睛状态数组,1=睁开, 0=闭合
public boolean detect(SeetaImageData image, SeetaRect face, int[] eyeStates)
}
// 使用示例
EyeStateDetector eyeDetector = new EyeStateDetector(setting);
int[] eyeStates = new int[2]; // 左眼、右眼
eyeDetector.detect(image, faceRect, eyeStates);
System.out.println("左眼状态: " + (eyeStates[0] == 1 ? "睁开" : "闭合"));
System.out.println("右眼状态: " + (eyeStates[1] == 1 ? "睁开" : "闭合"));public class FaceAntiSpoofing {
public FaceAntiSpoofing(SeetaModelSetting setting)
// 活体检测
// @param status 返回状态,0=真实人脸, 1=攻击人脸, 2=不确定
// @param score 置信度
public int detect(SeetaImageData image, SeetaRect face, float[] score)
}
// 使用示例
FaceAntiSpoofing antiSpoofing = new FaceAntiSpoofing(setting);
float[] score = new float[1];
int status = antiSpoofing.detect(image, faceRect, score);
switch (status) {
case 0:
System.out.println("真实人脸 (置信度: " + score[0] + ")");
break;
case 1:
System.out.println("攻击人脸 (置信度: " + score[0] + ")");
break;
case 2:
System.out.println("不确定 (置信度: " + score[0] + ")");
break;
}Proxy层提供简化API,自动管理对象池:
public class FaceDetectorProxy {
public FaceDetectorProxy(SeetaConfSetting setting)
public SeetaRect[] detect(SeetaImageData image)
}public class FaceRecognizerProxy {
public FaceRecognizerProxy(SeetaConfSetting setting)
public float[] extract(SeetaImageData image, SeetaPointF[] points)
public float cosineSimilarity(float[] features1, float[] features2)
}public class FaceLandmarkerProxy {
public FaceLandmarkerProxy(SeetaConfSetting setting)
public SeetaPointF[] mark(SeetaImageData image, SeetaRect face)
}| 模型文件名 | 功能描述 | 特征维度 | 推荐阈值 | 使用场景 |
|---|---|---|---|---|
| face_detector.csta | 人脸检测器 | - | - | 人脸检测、人脸跟踪 |
| face_recognizer.csta | 高精度人脸识别 | 1024维 | 0.62 | 标准人脸识别 |
| face_recognizer_mask.csta | 戴口罩人脸识别 | 512维 | 0.48 | 口罩场景识别 |
| face_recognizer_light.csta | 轻量级人脸识别 | 512维 | 0.55 | 资源受限环境 |
| face_landmarker_pts5.csta | 5点关键点检测 | - | - | 基础关键点定位 |
| face_landmarker_pts68.csta | 68点关键点检测 | - | - | 精细化关键点 |
| age_predictor.csta | 年龄预测 | - | - | 年龄分析 |
| gender_predictor.csta | 性别识别 | - | - | 性别分析 |
| eye_state.csta | 眼睛状态检测 | - | - | 疲劳检测 |
| mask_detector.csta | 口罩检测 | - | 0.5 | 口罩识别 |
| pose_estimation.csta | 姿态估计 | - | - | 角度分析 |
| quality_lbn.csta | 图像质量评估 | - | - | 质量评分 |
| fas_first.csta | 活体检测-局部 | - | - | 活体检测 |
| fas_second.csta | 活体检测-全局 | - | - | 活体检测 |
| face_landmarker_mask_pts5.csta | 遮挡评估 | - | - | 遮挡分析 |
# 百度网盘链接
链接1: https://pan.baidu.com/s/1LlXe2-YsUxQMe-MLzhQ2Aw 提取码:ngne
链接2: https://pan.baidu.com/s/1xjciq-lkzEBOZsTfVYAT9g 提取码:t6j0
// 基础人脸识别模型配置
SeetaModelSetting recognizerSetting = new SeetaModelSetting(
new String[]{"D:/models/face_recognizer.csta"},
SeetaDevice.SEETA_DEVICE_CPU
);
// GPU加速配置
SeetaModelSetting gpuSetting = new SeetaModelSetting(
0, // GPU ID
new String[]{"D:/models/face_recognizer.csta"},
SeetaDevice.SEETA_DEVICE_GPU
);
// 多模型配置(某些模型需要多个文件)
SeetaModelSetting antiSpoofingSetting = new SeetaModelSetting(
new String[]{
"D:/models/fas_first.csta",
"D:/models/fas_second.csta"
},
SeetaDevice.SEETA_DEVICE_CPU
);| 应用场景 | 建议阈值 | 说明 |
|---|---|---|
| 安防门禁 | 0.70 | 高安全性,宁可误拒不可误受 |
| 考勤系统 | 0.65 | 平衡安全性和便捷性 |
| 手机解锁 | 0.60 | 便捷性优先 |
| 戴口罩场景 | 0.48 | 针对口罩识别模型 |
| 活体检测 | 0.80 | 高安全性要求 |
public class SeetaConfSetting {
// 构造函数
public SeetaConfSetting(SeetaModelSetting modelSetting)
// 设置对象池大小
public void setMaxTotal(int maxTotal)
// 设置最大空闲对象数
public void setMaxIdle(int maxIdle)
// 设置最小空闲对象数
public void setMinIdle(int minIdle)
}
// 示例:高性能配置
SeetaConfSetting setting = new SeetaConfSetting(
new SeetaModelSetting(modelPath, SeetaDevice.SEETA_DEVICE_CPU)
);
setting.setMaxTotal(20); // 最大对象数
setting.setMaxIdle(10); // 最大空闲数
setting.setMinIdle(5); // 最小空闲数| 场景 | CPU核心数 | 对象池大小 | 线程池大小 |
|---|---|---|---|
| 开发测试 | - | 4 | 4 |
| 单线程应用 | - | 2-4 | 2-4 |
| 多线程应用 | N核 | N*2 | N*2 |
// 推荐图像尺寸:640x480 到 1920x1080
// 过大图像影响性能,过小图像影响精度
// 调整图像大小
public SeetaImageData resizeImage(SeetaImageData src, int targetWidth, int targetHeight) {
// 使用Java图像处理库调整大小
// ...
return resizedImage;
}// 使用线程池批量处理
ExecutorService executor = Executors.newFixedThreadPool(8);
List<Future<Result>> futures = new ArrayList<>();
for (ImageData image : imageList) {
futures.add(executor.submit(() -> processImage(image)));
}
// 等待所有任务完成
for (Future<Result> future : futures) {
Result result = future.get();
}
executor.shutdown();所有Proxy层类都是线程安全的,可以在多线程环境中使用:
// 线程安全的Proxy
public class ThreadSafeExample {
static FaceDetectorProxy detector = new FaceDetectorProxy(setting);
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(10);
for (int i = 0; i < 100; i++) {
executor.submit(() -> {
SeetaRect[] faces = detector.detect(image);
// 处理结果
});
}
executor.shutdown();
}
}public class FaceRecognitionPipeline {
private FaceDetectorProxy detector;
private FaceLandmarkerProxy landmarker;
private FaceRecognizerProxy recognizer;
public FaceRecognitionPipeline(SeetaConfSetting setting) {
this.detector = new FaceDetectorProxy(setting);
this.landmarker = new FaceLandmarkerProxy(setting);
this.recognizer = new FaceRecognizerProxy(setting);
}
/**
* 完整的人脸识别流程
*/
public RecognitionResult recognize(SeetaImageData image) {
RecognitionResult result = new RecognitionResult();
// 1. 人脸检测
SeetaRect[] faces = detector.detect(image);
if (faces == null || faces.length == 0) {
result.setSuccess(false);
result.setMessage("未检测到人脸");
return result;
}
// 取第一个检测到的人脸
SeetaRect face = faces[0];
// 2. 关键点定位
SeetaPointF[] points = landmarker.mark(image, face);
if (points == null || points.length == 0) {
result.setSuccess(false);
result.setMessage("关键点定位失败");
return result;
}
// 3. 特征提取
float[] features = recognizer.extract(image, points);
if (features == null || features.length == 0) {
result.setSuccess(false);
result.setMessage("特征提取失败");
return result;
}
// 4. 构建结果
result.setSuccess(true);
result.setFace(face);
result.setPoints(points);
result.setFeatures(features);
result.setFeatureLength(features.length);
return result;
}
/**
* 计算两张人脸的相似度
*/
public float compare(float[] features1, float[] features2) {
return recognizer.cosineSimilarity(features1, features2);
}
/**
* 与数据库中的人脸特征对比
*/
public String compareWithDatabase(float[] queryFeatures, Map<String, float[]> database) {
float bestSimilarity = 0;
String bestMatchId = null;
for (Map.Entry<String, float[]> entry : database.entrySet()) {
float similarity = compare(queryFeatures, entry.getValue());
if (similarity > bestSimilarity) {
bestSimilarity = similarity;
bestMatchId = entry.getKey();
}
}
// 阈值判断
if (bestSimilarity > 0.62) {
return bestMatchId;
} else {
return null; // 未找到匹配
}
}
}// SDK层需要手动释放
FaceDetector detector = new FaceDetector(setting);
try {
SeetaRect[] faces = detector.Detect(image);
// 处理结果
} finally {
detector.dispose(); // 重要:释放本地资源
}
// Proxy层自动管理
try (FaceDetectorProxy proxy = new FaceDetectorProxy(setting)) {
SeetaRect[] faces = proxy.detect(image);
// 自动释放
}// 错误示例:未释放资源
public void wrongUsage() {
for (int i = 0; i < 1000; i++) {
FaceDetector detector = new FaceDetector(setting); // 创建但未释放
SeetaRect[] faces = detector.Detect(image);
}
}
// 正确示例:使用对象池
public void correctUsage() {
FaceDetectorProxy proxy = new FaceDetectorProxy(setting);
for (int i = 0; i < 1000; i++) {
SeetaRect[] faces = proxy.detect(image); // 自动复用对象
}
}A: 请检查以下几点:
- 确保系统已安装 Visual C++ Redistributable (Windows)
- 确保模型文件路径正确
- 确保使用正确的平台架构(32位/64位)
解决方案:
# Windows: 安装VC++运行库
# 下载地址: https://www.xitongzhijia.net/soft/234968.html
# 验证系统架构
java -version
# 检查模型路径
System.out.println(new File("model.csta").exists());A: 需要在Dockerfile中安装libgomp1库:
FROM openjdk:8
RUN apt-get update && \
apt-get install -y --no-install-recommends libgomp1 && \
rm -rf /var/lib/apt/lists/*
WORKDIR /data/app
COPY target/seetaface6-sdk-*.jar /data/app/
CMD ["java", "-jar", "seetaface6-sdk-*.jar"]A: 确保:
- 安装了正确的CUDA版本(11.6.2)
- GPU驱动版本匹配(512.15)
- 模型路径正确
A: 可能原因:
- 图像中人脸太小(小于设置的最小人脸尺寸)
- 图像质量差(模糊、光线暗)
- 人脸角度过大
- 检测阈值设置过高
解决方案:
// 预处理图像
SeetaImageData processedImage = enhanceImage(image);A: 建议:
- 针对不同场景使用不同的阈值
- 戴口罩场景使用
face_recognizer_mask.csta - 定期更新模型和阈值
动态阈值示例:
public class DynamicThreshold {
public boolean isSamePerson(float similarity, String scenario) {
switch (scenario) {
case "security":
return similarity > 0.70;
case "attendance":
return similarity > 0.65;
case "unlock":
return similarity > 0.60;
default:
return similarity > 0.62;
}
}
}A: 优化建议:
- 使用对象池避免频繁创建/销毁对象
- 适当调整图像大小
- 使用GPU加速
- 调整线程数
性能监控:
public class PerformanceMonitor {
public static void measureTime(Runnable task, String name) {
long start = System.nanoTime();
task.run();
long end = System.nanoTime();
double duration = (end - start) / 1_000_000.0;
System.out.println(name + ": " + duration + " ms");
}
}
// 使用示例
measureTime(() -> {
SeetaRect[] faces = detector.detect(image);
}, "人脸检测");- 示例项目: Spring Boot集成示例
- 检查JDK版本是否符合要求(8-14)
- 检查模型文件是否存在且可读
- 检查本地库是否正确加载
- 检查内存是否充足
- 检查日志文件中的错误信息
- 使用最简单的示例测试基本功能
- 确认对象池配置合理
- 检查并发场景下的线程安全
- QQ群: 2284901326
- 微信: jjs0684425
- 邮箱: linyc1993@outlook.com
- 官方文档: SeetaFace官网
- 模型下载: 百度网盘
- 示例项目: Spring Boot集成示例
- ✅ 完善对象池管理
- ✅ 添加Proxy层简化API
- ✅ 支持ARM架构
- ✅ 修复国产x86机器AVX指令集问题
- ✅ 优化多线程性能
- ✅ 完善文档和示例
- ✅ 基础SDK封装
- ✅ 支持人脸检测、识别、关键点
- ✅ 支持GPU加速
欢迎提交Issue和Pull Request!
- Fork项目
- 创建特性分支 (
git checkout -b feature/AmazingFeature) - 提交更改 (
git commit -m 'Add some AmazingFeature') - 推送到分支 (
git push origin feature/AmazingFeature) - 开启Pull Request
本项目采用 MIT License 协议开源。
如果这个项目对你有帮助,请给我们一个 ⭐ Star!