Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 78 additions & 0 deletions bayesian.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
import bayespy as bp
import numpy as np
import csv
from colorama import init
from colorama import Fore, Back, Style
init()
# Define Parameter Enum values
#Age
ageEnum = {'SuperSeniorCitizen':0, 'SeniorCitizen':1, 'MiddleAged':2, 'Youth':3, 'Teen':4}
# Gender
genderEnum = {'Male':0, 'Female':1}
# FamilyHistory
familyHistoryEnum = {'Yes':0, 'No':1}
# Diet(Calorie Intake)
dietEnum = {'High':0, 'Medium':1, 'Low':2}
# LifeStyle
lifeStyleEnum = {'Athlete':0, 'Active':1, 'Moderate':2, 'Sedetary':3}
# Cholesterol
cholesterolEnum = {'High':0, 'BorderLine':1, 'Normal':2}
# HeartDisease
heartDiseaseEnum = {'Yes':0, 'No':1}
#heart_disease_data.csv
with open('heart_disease_data.csv') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
data = []
for x in dataset:
data.append([ageEnum[x[0]],genderEnum[x[1]],familyHistoryEnum[x[2]],dietEnum[x[3]],lifeStyleEnum
[x[4]],cholesterolEnum[x[5]],heartDiseaseEnum[x[6]]])
# Training data for machine learning todo: should import from csv
data = np.array(data)
N = len(data)
# Input data column assignment
p_age = bp.nodes.Dirichlet(1.0*np.ones(5))
age = bp.nodes.Categorical(p_age, plates=(N,))
age.observe(data[:,0])
p_gender = bp.nodes.Dirichlet(1.0*np.ones(2))
gender = bp.nodes.Categorical(p_gender, plates=(N,))
gender.observe(data[:,1])
p_familyhistory = bp.nodes.Dirichlet(1.0*np.ones(2))
familyhistory = bp.nodes.Categorical(p_familyhistory, plates=(N,))
familyhistory.observe(data[:,2])
p_diet = bp.nodes.Dirichlet(1.0*np.ones(3))
diet = bp.nodes.Categorical(p_diet, plates=(N,))
diet.observe(data[:,3])
p_lifestyle = bp.nodes.Dirichlet(1.0*np.ones(4))
lifestyle = bp.nodes.Categorical(p_lifestyle, plates=(N,))
lifestyle.observe(data[:,4])
p_cholesterol = bp.nodes.Dirichlet(1.0*np.ones(3))
cholesterol = bp.nodes.Categorical(p_cholesterol, plates=(N,))
cholesterol.observe(data[:,5])
# Prepare nodes and establish edges
# np.ones(2) -> HeartDisease has 2 options Yes/No
# plates(5, 2, 2, 3, 4, 3) -> corresponds to options present for domain values
p_heartdisease = bp.nodes.Dirichlet(np.ones(2), plates=(5, 2, 2, 3, 4, 3))
heartdisease = bp.nodes.MultiMixture([age, gender, familyhistory, diet, lifestyle, cholesterol],
bp.nodes.Categorical, p_heartdisease)
heartdisease.observe(data[:,6])
p_heartdisease.update()
# Sample Test with hardcoded values
#print("Sample Probability")
#print("Probability(HeartDisease|Age=SuperSeniorCitizen, Gender=Female, FamilyHistory=Yes,
DietIntake=Medium, LifeStyle=Sedetary, Cholesterol=High)")
#print(bp.nodes.MultiMixture([ageEnum['SuperSeniorCitizen'], genderEnum['Female'],
familyHistoryEnum['Yes'], dietEnum['Medium'], lifeStyleEnum['Sedetary'], cholesterolEnum['High']],
bp.nodes.Categorical, p_heartdisease).get_moments()[0][heartDiseaseEnum['Yes']])
# Interactive Test
m = 0
while m == 0:
print("\n")
res = bp.nodes.MultiMixture([int(input('Enter Age: ' + str(ageEnum))), int(input('Enter Gender: ' +
str(genderEnum))), int(input('Enter FamilyHistory: ' + str(familyHistoryEnum))), int(input('Enter
dietEnum: ' + str(dietEnum))), int(input('Enter LifeStyle: ' + str(lifeStyleEnum))), int(input('Enter
Cholesterol: ' + str(cholesterolEnum)))], bp.nodes.Categorical,
p_heartdisease).get_moments()[0][heartDiseaseEnum['Yes']]
print("Probability(HeartDisease) = " + str(res))
#print(Style.RESET_ALL)
m = int(input("Enter for Continue:0, Exit :1 "))