Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions bin/RegisterTritonDialects.h
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ void registerTestAlignmentPass();
void registerTestAllocationPass();
void registerTestMembarPass();
void registerTestTritonAMDGPURangeAnalysis();
void registerTestTritonAMDGPUFoldTrueCmpIOp();
} // namespace test
} // namespace mlir

Expand All @@ -47,6 +48,7 @@ inline void registerTritonDialects(mlir::DialectRegistry &registry) {
mlir::test::registerTestAllocationPass();
mlir::test::registerTestMembarPass();
mlir::test::registerTestTritonAMDGPURangeAnalysis();
mlir::test::registerTestTritonAMDGPUFoldTrueCmpIOp();
mlir::triton::registerConvertTritonToTritonGPUPass();
mlir::triton::gpu::registerAllocateSharedMemoryPass();
mlir::triton::gpu::registerTritonGPUAllocateWarpGroups();
Expand Down
5 changes: 4 additions & 1 deletion python/test/unit/language/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -4666,7 +4666,10 @@ def _kernel(out_ptr, N: tl.constexpr, BLOCK_N: tl.constexpr):
if is_interpreter():
return

assert 'llvm.assume' in pgm.asm['llir']
assert 'llvm.intr.assume' in pgm.asm['ttgir']
# stream pipeliner on AMD folds true cmpi ops to %true (Which llvm itself then dces)
if not is_hip():
assert 'llvm.assume' in pgm.asm['llir']


# ---------------
Expand Down
158 changes: 158 additions & 0 deletions test/TritonGPU/amd/amd-fold-true-cmpi.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
// RUN: triton-opt %s -split-input-file -allow-unregistered-dialect -test-tritonamdgpu-fold-true-cmpi -canonicalize | FileCheck %s

module attributes {"ttg.num-warps" = 4 : i32} {
tt.func @cmpsle(%arg0: !tt.ptr<f32>) -> i1 {
%c0 = arith.constant 0 : i32
%c1024_i32 = arith.constant 1024 : i32
%cmpsle = arith.cmpi sle, %c0, %c1024_i32 : i32
tt.return %cmpsle: i1
}
}

// CHECK-LABEL: tt.func @cmpsle(
// CHECK-SAME: %[[VAL_0:.*]]: !tt.ptr<f32>) -> i1 {
// CHECK: %[[VAL_1:.*]] = arith.constant true
// CHECK: tt.return %[[VAL_1]] : i1
// CHECK: }

// -----

module attributes {"ttg.num-warps" = 4 : i32} {
tt.func @assumepid(%arg0: !tt.ptr<f32>) -> tensor<1024xf32> {
%c0 = arith.constant 0 : i32
%c1024_i32 = arith.constant 1024 : i32
%pid = tt.get_program_id x : i32
%cmpsle = arith.cmpi sle, %pid, %c1024_i32 : i32
llvm.intr.assume %cmpsle : i1
%cmpsge = arith.cmpi sge, %pid, %c0 : i32
llvm.intr.assume %cmpsge : i1
%1 = arith.muli %pid, %c1024_i32 : i32
%2 = tt.addptr %arg0, %1 : !tt.ptr<f32>, i32
%3 = tt.splat %2 : !tt.ptr<f32> -> tensor<1024x!tt.ptr<f32>>
%4 = tt.load %3 : tensor<1024x!tt.ptr<f32>>
tt.return %4 : tensor<1024xf32>
}
}

// CHECK-LABEL: tt.func @assumepid(
// CHECK-SAME: %[[VAL_0:.*]]: !tt.ptr<f32>) -> tensor<1024xf32> {
// CHECK: %[[VAL_1:.*]] = arith.constant true
// CHECK: %[[VAL_2:.*]] = arith.constant 1024 : i32
// CHECK: %[[VAL_3:.*]] = tt.get_program_id x : i32
// CHECK: llvm.intr.assume %[[VAL_1]] : i1
// CHECK: llvm.intr.assume %[[VAL_1]] : i1
// CHECK: %[[VAL_4:.*]] = arith.muli %[[VAL_3]], %[[VAL_2]] : i32
// CHECK: %[[VAL_5:.*]] = tt.addptr %[[VAL_0]], %[[VAL_4]] : !tt.ptr<f32>, i32
// CHECK: %[[VAL_6:.*]] = tt.splat %[[VAL_5]] : !tt.ptr<f32> -> tensor<1024x!tt.ptr<f32>>
// CHECK: %[[VAL_7:.*]] = tt.load %[[VAL_6]] : tensor<1024x!tt.ptr<f32>>
// CHECK: tt.return %[[VAL_7]] : tensor<1024xf32>
// CHECK: }

// -----

#blocked = #ttg.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
#blocked1 = #ttg.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
#mma = #ttg.nvidia_mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 1], instrShape = []}>
#shared = #ttg.swizzled_shared<{vec = 8, perPhase = 2, maxPhase = 4, order = [1, 0]}>
#shared1 = #ttg.swizzled_shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [1, 0]}>
#smem = #ttg.shared_memory
module attributes {"ttg.num-ctas" = 1 : i32, "ttg.num-warps" = 4 : i32} {
tt.func @assume_matmul(%arg0: index, %arg1: index, %arg2: index, %arg3: !tt.ptr<f16>, %arg4: !tt.ptr<f16>) -> tensor<128x128xf32, #mma> {
%c-1 = arith.constant -1 : index
%c1 = arith.constant 1 : index
%c0 = arith.constant 0 : index
%c1_i32 = arith.constant 1 : i32
%c0_i32 = arith.constant 0 : i32
%true = arith.constant true
%cst = arith.constant dense<4.000000e+00> : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>>
%cst_0 = arith.constant dense<4> : tensor<32x128xi32, #blocked>
%cst_1 = arith.constant dense<4> : tensor<128x32xi32, #blocked1>
%cst_2 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma>
%cst_3 = arith.constant dense<0.000000e+00> : tensor<32x128xf16, #blocked>
%0 = tt.splat %arg3 : !tt.ptr<f16> -> tensor<128x32x!tt.ptr<f16>, #blocked1>
%1 = tt.make_range {end = 32 : i32, start = 0 : i32} : tensor<32xi32, #ttg.slice<{dim = 0, parent = #blocked1}>>
%2 = tt.expand_dims %1 {axis = 0 : i32} : tensor<32xi32, #ttg.slice<{dim = 0, parent = #blocked1}>> -> tensor<1x32xi32, #blocked1>
%3 = tt.broadcast %2 : tensor<1x32xi32, #blocked1> -> tensor<128x32xi32, #blocked1>
%4 = tt.addptr %0, %3 : tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<128x32xi32, #blocked1>
%5 = tt.splat %arg4 : !tt.ptr<f16> -> tensor<32x128x!tt.ptr<f16>, #blocked>
%6 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #ttg.slice<{dim = 0, parent = #blocked}>>
%7 = tt.expand_dims %6 {axis = 0 : i32} : tensor<128xi32, #ttg.slice<{dim = 0, parent = #blocked}>> -> tensor<1x128xi32, #blocked>
%8 = tt.broadcast %7 : tensor<1x128xi32, #blocked> -> tensor<32x128xi32, #blocked>
%9 = tt.addptr %5, %8 : tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<32x128xi32, #blocked>
%10 = ttg.local_alloc : () -> !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable>
%11 = ttg.local_alloc : () -> !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable>
%12 = arith.cmpi slt, %arg0, %arg1 : index
%13 = tt.splat %12 : i1 -> tensor<128x32xi1, #blocked1>
%14 = tt.load %4, %13 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32x!tt.ptr<f16>, #blocked1>
%15 = tt.splat %12 : i1 -> tensor<32x128xi1, #blocked>
%16 = tt.load %9, %15, %cst_3 : tensor<32x128x!tt.ptr<f16>, #blocked>
%17 = ttg.memdesc_subview %10[%c0_i32, %c0_i32, %c0_i32] : !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable>
ttg.local_store %14, %17 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32xf16, #blocked1> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable>
%18 = ttg.memdesc_subview %11[%c0_i32, %c0_i32, %c0_i32] : !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable>
ttg.local_store %16, %18 : tensor<32x128xf16, #blocked> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable>
%19 = arith.subi %arg1, %arg2 : index
%20:6 = scf.for %arg5 = %arg0 to %19 step %arg2 iter_args(%arg6 = %4, %arg7 = %9, %arg8 = %cst_2, %arg9 = %c0_i32, %arg10 = %17, %arg11 = %18) -> (tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<128x128xf32, #mma>, i32, !ttg.memdesc<128x32xf16, #shared, #smem, mutable>, !ttg.memdesc<32x128xf16, #shared1, #smem, mutable>) {
%33 = tt.addptr %arg6, %cst_1 : tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<128x32xi32, #blocked1>
%34 = tt.addptr %arg7, %cst_0 : tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<32x128xi32, #blocked>
llvm.intr.assume %true : i1
%35 = tt.load %33 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32x!tt.ptr<f16>, #blocked1>
%36 = ttg.local_load %arg10 : !ttg.memdesc<128x32xf16, #shared, #smem, mutable> -> tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>>
%37 = tt.load %34 : tensor<32x128x!tt.ptr<f16>, #blocked>
%38 = ttg.local_load %arg11 : !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> -> tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>>
%39 = arith.mulf %38, %cst : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>>
%40 = tt.dot %36, %39, %arg8 : tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>> * tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> -> tensor<128x128xf32, #mma>
%41 = arith.addi %arg9, %c1_i32 : i32
%42 = arith.cmpi slt, %41, %c1_i32 : i32
%43 = arith.select %42, %41, %c0_i32 : i32
%44 = ttg.memdesc_subview %10[%43, %c0_i32, %c0_i32] : !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable>
ttg.local_store %35, %44 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32xf16, #blocked1> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable>
%45 = ttg.memdesc_subview %11[%43, %c0_i32, %c0_i32] : !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable>
ttg.local_store %37, %45 : tensor<32x128xf16, #blocked> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable>
scf.yield %33, %34, %40, %43, %44, %45 : tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<128x128xf32, #mma>, i32, !ttg.memdesc<128x32xf16, #shared, #smem, mutable>, !ttg.memdesc<32x128xf16, #shared1, #smem, mutable>
}
%21 = arith.cmpi slt, %arg2, %c0 : index
%22 = arith.select %21, %c1, %c-1 : index
%23 = arith.subi %arg1, %arg0 : index
%24 = arith.addi %23, %arg2 : index
%25 = arith.addi %24, %22 : index
%26 = arith.divsi %25, %arg2 : index
%28 = ttg.local_load %20#4 : !ttg.memdesc<128x32xf16, #shared, #smem, mutable> -> tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>>
%29 = ttg.local_load %20#5 : !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> -> tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>>
%30 = arith.mulf %29, %cst : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>>
%27 = arith.cmpi sge, %26, %c1 : index
llvm.intr.assume %27 : i1
%31 = scf.if %27 -> (tensor<128x128xf32, #mma>) {
%33 = tt.dot %28, %30, %20#2 : tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>> * tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> -> tensor<128x128xf32, #mma>
scf.yield %33 : tensor<128x128xf32, #mma>
} else {
scf.yield %20#2 : tensor<128x128xf32, #mma>
}
%32 = arith.select %27, %31, %20#2 : tensor<128x128xf32, #mma>
ttg.local_dealloc %10 : !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable>
ttg.local_dealloc %11 : !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable>
tt.return %32 : tensor<128x128xf32, #mma>
}
}

// CHECK: #[[$ATTR_2:.+]] = #ttg.nvidia_mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 1], instrShape = []}>
// CHECK: #[[$ATTR_3:.+]] = #ttg.swizzled_shared<{vec = 8, perPhase = 2, maxPhase = 4, order = [1, 0]}>
// CHECK: #[[$ATTR_4:.+]] = #ttg.swizzled_shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [1, 0]}>
// CHECK: #[[$ATTR_5:.+]] = #ttg.shared_memory

// CHECK-LABEL: tt.func @assume_matmul(
// CHECK: %[[VAL_7:.*]] = arith.constant true
// CHECK: %[[VAL_8:.*]] = arith.constant dense<4.000000e+00> : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>>
// CHECK: %[[VAL_23:.*]] = ttg.local_alloc : () -> !ttg.memdesc<1x128x32xf16, #[[$ATTR_3]], #[[$ATTR_5]], mutable>
// CHECK: %[[VAL_24:.*]] = ttg.local_alloc : () -> !ttg.memdesc<1x32x128xf16, #[[$ATTR_4]], #[[$ATTR_5]], mutable>
// CHECK: %[[VAL_33:.*]]:6 = scf.for
// CHECK: scf.yield
// CHECK: }
// CHECK-NEXT: %[[VAL_54:.*]] = ttg.local_load %[[VAL_55:.*]]#4 : !ttg.memdesc<128x32xf16, #[[$ATTR_3]], #[[$ATTR_5]], mutable> -> tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #[[$ATTR_2]], kWidth = 2}>>
// CHECK-NEXT: %[[VAL_56:.*]] = ttg.local_load %[[VAL_55]]#5 : !ttg.memdesc<32x128xf16, #[[$ATTR_4]], #[[$ATTR_5]], mutable> -> tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>>
// CHECK-NEXT: %[[VAL_57:.*]] = arith.mulf %[[VAL_56]], %[[VAL_8]] : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>>
// CHECK-NEXT: llvm.intr.assume %[[VAL_7]] : i1
// CHECK-NEXT: %[[VAL_58:.*]] = tt.dot %[[VAL_54]], %[[VAL_57]], %[[VAL_55]]#2 : tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #[[$ATTR_2]], kWidth = 2}>> * tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>> -> tensor<128x128xf32, #[[$ATTR_2]]>
// CHECK-NEXT: ttg.local_dealloc %[[VAL_23]] : !ttg.memdesc<1x128x32xf16, #[[$ATTR_3]], #[[$ATTR_5]], mutable>
// CHECK-NEXT: ttg.local_dealloc %[[VAL_24]] : !ttg.memdesc<1x32x128xf16, #[[$ATTR_4]], #[[$ATTR_5]], mutable>
// CHECK-NEXT: tt.return %[[VAL_58]] : tensor<128x128xf32, #[[$ATTR_2]]>
// CHECK-NEXT: }
Loading
Loading