|
| 1 | +using OrdinaryDiffEqSSPRK |
| 2 | +using Trixi |
| 3 | +using LinearAlgebra: norm |
| 4 | + |
| 5 | +############################################################################### |
| 6 | +# Semidiscretizations of the polytropic Euler equations and Lattice-Boltzmann method (LBM) |
| 7 | +# coupled using converter functions across their respective domains to generate a periodic system. |
| 8 | +# |
| 9 | +# In this elixir, we have a rectangular domain that is divided into a left and right half. |
| 10 | +# On each half of the domain, an independent SemidiscretizationHyperbolic is created for each set of equations. |
| 11 | +# The two systems are coupled in the x-direction and are periodic in the y-direction. |
| 12 | +# For a high-level overview, see also the figure below: |
| 13 | +# |
| 14 | +# (-2, 1) ( 2, 1) |
| 15 | +# ┌────────────────────┬────────────────────┐ |
| 16 | +# │ ↑ periodic ↑ │ ↑ periodic ↑ │ |
| 17 | +# │ │ │ |
| 18 | +# │ ========= │ ========= │ |
| 19 | +# │ system #1 │ system #2 │ |
| 20 | +# | Euler | LBM | |
| 21 | +# │ ========= │ ========= │ |
| 22 | +# │ │ │ |
| 23 | +# │<-- coupled │<-- coupled │ |
| 24 | +# │ coupled -->│ coupled -->│ |
| 25 | +# │ │ │ |
| 26 | +# │ ↓ periodic ↓ │ ↓ periodic ↓ │ |
| 27 | +# └────────────────────┴────────────────────┘ |
| 28 | +# (-2, -1) ( 2, -1) |
| 29 | + |
| 30 | +polydeg = 2 |
| 31 | +cells_per_dim_per_section = (16, 8) |
| 32 | + |
| 33 | +########### |
| 34 | +# system #1 |
| 35 | +# Euler |
| 36 | +########### |
| 37 | + |
| 38 | +### Setup taken from "elixir_eulerpolytropic_isothermal_wave.jl" ### |
| 39 | + |
| 40 | +gamma = 1.0 # Isothermal gas |
| 41 | +kappa = 1.0 # Scaling factor for the pressure, must fit to LBM `c_s` |
| 42 | +eqs_euler = PolytropicEulerEquations2D(gamma, kappa) |
| 43 | + |
| 44 | +volume_flux = flux_winters_etal |
| 45 | +solver_euler = DGSEM(polydeg = polydeg, surface_flux = flux_hll, |
| 46 | + volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) |
| 47 | + |
| 48 | +# Linear pressure wave/Gaussian bump moving in the positive x-direction. |
| 49 | +function initial_condition_pressure_bump(x, t, equations::PolytropicEulerEquations2D) |
| 50 | + rho = ((1.0 + 0.01 * exp(-(x[1] - 1)^2 / 0.1)) / equations.kappa)^(1 / equations.gamma) |
| 51 | + v1 = ((0.01 * exp(-(x[1] - 1)^2 / 0.1)) / equations.kappa) |
| 52 | + v2 = 0.0 |
| 53 | + |
| 54 | + return prim2cons(SVector(rho, v1, v2), equations) |
| 55 | +end |
| 56 | +initial_condition_euler = initial_condition_pressure_bump |
| 57 | + |
| 58 | +coords_min_euler = (-2.0, -1.0) |
| 59 | +coords_max_euler = (0.0, 1.0) |
| 60 | +mesh_euler = StructuredMesh(cells_per_dim_per_section, |
| 61 | + coords_min_euler, coords_max_euler, |
| 62 | + periodicity = (false, true)) |
| 63 | + |
| 64 | +# Use macroscopic variables derived from LBM populations |
| 65 | +# as boundary values for the Euler equations |
| 66 | +function coupling_function_LBM2Euler(x, u, equations_other, equations_own) |
| 67 | + rho, v1, v2, _ = cons2macroscopic(u, equations_other) |
| 68 | + return prim2cons(SVector(rho, v1, v2), equations_own) |
| 69 | +end |
| 70 | + |
| 71 | +boundary_conditions_euler = (x_neg = BoundaryConditionCoupled(2, (:end, :i_forward), |
| 72 | + Float64, |
| 73 | + coupling_function_LBM2Euler), |
| 74 | + x_pos = BoundaryConditionCoupled(2, (:begin, :i_forward), |
| 75 | + Float64, |
| 76 | + coupling_function_LBM2Euler), |
| 77 | + y_neg = boundary_condition_periodic, |
| 78 | + y_pos = boundary_condition_periodic) |
| 79 | + |
| 80 | +semi_euler = SemidiscretizationHyperbolic(mesh_euler, eqs_euler, initial_condition_euler, |
| 81 | + solver_euler; |
| 82 | + boundary_conditions = boundary_conditions_euler) |
| 83 | + |
| 84 | +########### |
| 85 | +# system #2 |
| 86 | +# LBM |
| 87 | +########### |
| 88 | + |
| 89 | +# Results in c_s = c/sqrt(3) = 1. |
| 90 | +# This in turn implies that also in the LBM, p = c_s^2 * rho = 1 * rho = kappa * rho holds |
| 91 | +# This is absolutely essential for the correct coupling between the two systems. |
| 92 | +c = sqrt(3) |
| 93 | + |
| 94 | +# Reference values `rho0, u0` correspond to the initial condition of the Euler equations. |
| 95 | +# The gas should be inviscid (Re = Inf) to be consistent with the inviscid Euler equations. |
| 96 | +# The Mach number `Ma` is computed internally from the speed of sound `c_s = c / sqrt(3)` and `u0`. |
| 97 | +eqs_lbm = LatticeBoltzmannEquations2D(c = c, Re = Inf, rho0 = 1.0, u0 = 0.0, Ma = nothing) |
| 98 | + |
| 99 | +# Quick & dirty implementation of the `flux_godunov` for Cartesian, yet structured meshes. |
| 100 | +@inline function Trixi.flux_godunov(u_ll, u_rr, normal_direction::AbstractVector, |
| 101 | + equations::LatticeBoltzmannEquations2D) |
| 102 | + RealT = eltype(normal_direction) |
| 103 | + if isapprox(normal_direction[2], zero(RealT), atol = 2 * eps(RealT)) |
| 104 | + v_alpha = equations.v_alpha1 * abs(normal_direction[1]) |
| 105 | + elseif isapprox(normal_direction[1], zero(RealT), atol = 2 * eps(RealT)) |
| 106 | + v_alpha = equations.v_alpha2 * abs(normal_direction[2]) |
| 107 | + else |
| 108 | + error("Invalid normal direction for flux_godunov: $normal_direction") |
| 109 | + end |
| 110 | + return 0.5f0 * (v_alpha .* (u_ll + u_rr) - abs.(v_alpha) .* (u_rr - u_ll)) |
| 111 | +end |
| 112 | + |
| 113 | +solver_lbm = DGSEM(polydeg = 2, surface_flux = flux_godunov) |
| 114 | + |
| 115 | +function initial_condition_lbm(x, t, equations::LatticeBoltzmannEquations2D) |
| 116 | + rho = (1.0 + 0.01 * exp(-(x[1] - 1)^2 / 0.1)) |
| 117 | + v1 = 0.01 * exp(-(x[1] - 1)^2 / 0.1) |
| 118 | + |
| 119 | + v2 = 0.0 |
| 120 | + |
| 121 | + return equilibrium_distribution(rho, v1, v2, equations) |
| 122 | +end |
| 123 | + |
| 124 | +coords_min_lbm = (0.0, -1.0) |
| 125 | +coords_max_lbm = (2.0, 1.0) |
| 126 | +mesh_lbm = StructuredMesh(cells_per_dim_per_section, |
| 127 | + coords_min_lbm, coords_max_lbm, |
| 128 | + periodicity = (false, true)) |
| 129 | + |
| 130 | +# Supply equilibrium (Maxwellian) distribution function computed |
| 131 | +# from the Euler-variables as boundary values for the LBM equations |
| 132 | +function coupling_function_Euler2LBM(x, u, equations_other, equations_own) |
| 133 | + u_prim_euler = cons2prim(u, equations_other) |
| 134 | + rho = u_prim_euler[1] |
| 135 | + v1 = u_prim_euler[2] |
| 136 | + v2 = u_prim_euler[3] |
| 137 | + |
| 138 | + return equilibrium_distribution(rho, v1, v2, equations_own) |
| 139 | +end |
| 140 | + |
| 141 | +boundary_conditions_lbm = (x_neg = BoundaryConditionCoupled(1, (:end, :i_forward), |
| 142 | + Float64, |
| 143 | + coupling_function_Euler2LBM), |
| 144 | + x_pos = BoundaryConditionCoupled(1, (:begin, :i_forward), |
| 145 | + Float64, |
| 146 | + coupling_function_Euler2LBM), |
| 147 | + y_neg = boundary_condition_periodic, |
| 148 | + y_pos = boundary_condition_periodic) |
| 149 | + |
| 150 | +semi_lbm = SemidiscretizationHyperbolic(mesh_lbm, eqs_lbm, initial_condition_lbm, |
| 151 | + solver_lbm; |
| 152 | + boundary_conditions = boundary_conditions_lbm) |
| 153 | + |
| 154 | +# Create a semidiscretization that bundles the two semidiscretizations |
| 155 | +semi = SemidiscretizationCoupled(semi_euler, semi_lbm) |
| 156 | + |
| 157 | +############################################################################### |
| 158 | +# ODE solvers, callbacks etc. |
| 159 | + |
| 160 | +tspan = (0.0, 10.0) |
| 161 | +ode = semidiscretize(semi, tspan) |
| 162 | + |
| 163 | +summary_callback = SummaryCallback() |
| 164 | + |
| 165 | +analysis_interval = 100 |
| 166 | +analysis_callback_euler = AnalysisCallback(semi_euler, interval = analysis_interval) |
| 167 | +analysis_callback_lbm = AnalysisCallback(semi_lbm, interval = analysis_interval) |
| 168 | +analysis_callback = AnalysisCallbackCoupled(semi, |
| 169 | + analysis_callback_euler, |
| 170 | + analysis_callback_lbm) |
| 171 | + |
| 172 | +alive_callback = AliveCallback(analysis_interval = analysis_interval) |
| 173 | + |
| 174 | +# Need to implement `cons2macroscopic` for `PolytropicEulerEquations2D` |
| 175 | +# in order to be able to use this in the `SaveSolutionCallback` below |
| 176 | +@inline function Trixi.cons2macroscopic(u, equations::PolytropicEulerEquations2D) |
| 177 | + u_prim = cons2prim(u, equations) |
| 178 | + p = pressure(u, equations) |
| 179 | + return SVector(u_prim[1], u_prim[2], u_prim[3], p) |
| 180 | +end |
| 181 | +function Trixi.varnames(::typeof(cons2macroscopic), ::PolytropicEulerEquations2D) |
| 182 | + ("rho", "v1", "v2", "p") |
| 183 | +end |
| 184 | + |
| 185 | +save_solution = SaveSolutionCallback(interval = 50, |
| 186 | + save_initial_solution = true, |
| 187 | + save_final_solution = true, |
| 188 | + solution_variables = cons2macroscopic) |
| 189 | + |
| 190 | +cfl = 2.0 |
| 191 | +stepsize_callback = StepsizeCallback(cfl = cfl) |
| 192 | + |
| 193 | +# Need special version of the LBM collision callback for a `SemidiscretizationCoupled` |
| 194 | +@inline function Trixi.lbm_collision_callback(integrator) |
| 195 | + dt = get_proposed_dt(integrator) |
| 196 | + semi_coupled = integrator.p # Here `p` is the `SemidiscretizationCoupled` |
| 197 | + u_ode_full = integrator.u # ODE Vector for the entire coupled system |
| 198 | + for (semi_index, semi_i) in enumerate(semi_coupled.semis) |
| 199 | + mesh, equations, solver, cache = Trixi.mesh_equations_solver_cache(semi_i) |
| 200 | + if equations isa LatticeBoltzmannEquations2D |
| 201 | + @unpack collision_op = equations |
| 202 | + |
| 203 | + u_ode_i = Trixi.get_system_u_ode(u_ode_full, semi_index, semi_coupled) |
| 204 | + u = Trixi.wrap_array(u_ode_i, mesh, equations, solver, cache) |
| 205 | + |
| 206 | + Trixi.@trixi_timeit Trixi.timer() "LBM collision" Trixi.apply_collision!(u, dt, |
| 207 | + collision_op, |
| 208 | + mesh, |
| 209 | + equations, |
| 210 | + solver, |
| 211 | + cache) |
| 212 | + end |
| 213 | + end |
| 214 | + |
| 215 | + return nothing |
| 216 | +end |
| 217 | + |
| 218 | +collision_callback = LBMCollisionCallback() |
| 219 | + |
| 220 | +callbacks = CallbackSet(summary_callback, |
| 221 | + analysis_callback, alive_callback, |
| 222 | + save_solution, |
| 223 | + stepsize_callback, |
| 224 | + collision_callback) |
| 225 | + |
| 226 | +############################################################################### |
| 227 | +# run the simulation |
| 228 | + |
| 229 | +sol = solve(ode, SSPRK83(); |
| 230 | + dt = 0.01, # solve needs some value here but it will be overwritten by the stepsize_callback |
| 231 | + ode_default_options()..., callback = callbacks); |
0 commit comments