Skip to content

trustyai-explainability/llama-stack-provider-trustyai-garak

Repository files navigation

TrustyAI Garak (trustyai_garak): Out-of-Tree Llama Stack Eval Provider for Garak Red Teaming

About

This repository implements Garak as a Llama Stack out-of-tree provider for security testing and red teaming of Large Language Models with optional Shield Integration for enhanced security testing.

What It Does

  • Automated Security Testing: Detects prompt injection, jailbreaks, toxicity, and bias vulnerabilities
  • Compliance Scanning: OWASP LLM Top 10, AVID taxonomy benchmarks
  • Shield Testing: Compare LLM security with/without guardrails
  • Scalable Deployment: Local or Kubernetes/Kubeflow execution
  • Comprehensive Reporting: JSON, HTML, and detailed logs with vulnerability scores (0.0-1.0)

Installation

git clone https://github.com/trustyai-explainability/llama-stack-provider-trustyai-garak.git
cd llama-stack-provider-trustyai-garak
python3 -m venv .venv && source .venv/bin/activate
pip install -e .
# For remote execution: pip install -e ".[remote]"

Quick Start

1. Configure Environment

export VLLM_URL="http://your-model-endpoint/v1"
export INFERENCE_MODEL="your-model-name"

2. Start Server

# Basic mode (standard scanning)
llama stack run run.yaml --image-type venv

# Enhanced mode (with shield testing)
llama stack run run-with-safety.yaml --image-type venv

# Remote mode (Kubernetes/KFP)
llama stack run run-remote.yaml --image-type venv

Server runs at http://localhost:8321

3. Run Security Scan

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url="http://localhost:8321")

# Quick 5-minute scan
job = client.eval.run_eval(
    benchmark_id="trustyai_garak::quick",
    benchmark_config={
        "eval_candidate": {
            "type": "model",
            "model": "your-model-name",
            "sampling_params": {"max_tokens": 100}
        }
    }
)

# Check status
status = client.eval.jobs.status(job_id=job.job_id, benchmark_id="trustyai_garak::quick")
print(f"Status: {status.status}")

# Get results when complete
if status.status == "completed":
    results = client.eval.get_eval_job_result(job_id=job.job_id, benchmark_id="trustyai_garak::quick")

Available Benchmarks

Compliance Frameworks

Benchmark ID Framework Duration
trustyai_garak::owasp_llm_top10 OWASP LLM Top 10 ~8 hours
trustyai_garak::avid_security AVID Security ~8 hours
trustyai_garak::avid_ethics AVID Ethics ~30 minutes
trustyai_garak::avid_performance AVID Performance ~40 minutes

Test Profiles

Benchmark ID Description Duration
trustyai_garak::quick Essential security checks (3 probes) ~5 minutes
trustyai_garak::standard Standard attack vectors (5 categories) ~1 hour

Duration estimates based on Qwen2.5 7B via vLLM

Advanced Usage

Other Garak Probes

client.benchmarks.register(
    benchmark_id="custom",
    dataset_id="garak",
    scoring_functions=["garak_scoring"],
    provider_benchmark_id="custom",
    provider_id="trustyai_garak",
    metadata={
        "probes": ["latentinjection.LatentJailbreak", "snowball.GraphConnectivity"],
        "timeout": 900
    }
)

Shield Testing

# Test with input shield
client.benchmarks.register(
    benchmark_id="with_shield",
    dataset_id="garak",
    scoring_functions=["garak_scoring"],
    provider_benchmark_id="with_shield",
    provider_id="trustyai_garak",
    metadata={
        "probes": ["promptinject.HijackHateHumans"],
        "shield_ids": ["Prompt-Guard-86M"]  # Input shield only
    }
)

# Test with input/output shields
metadata={
    "probes": ["promptinject.HijackHateHumans"],
    "shield_config": {
        "input": ["Prompt-Guard-86M"],
        "output": ["Llama-Guard-3-8B"]
    }
}

Accessing Reports

# Get report file IDs from job status
scan_report_id = status.metadata["scan.report.jsonl"]
scan_html_id = status.metadata["scan.report.html"]

# Download via Files API
content = client.files.content(scan_report_id)

# Or via HTTP
import requests
report = requests.get(f"http://localhost:8321/v1/openai/v1/files/{scan_html_id}/content")

Remote Execution (Kubernetes/KFP)

Setup

# KFP Configuration
export KUBEFLOW_PIPELINES_ENDPOINT="https://your-kfp-endpoint"
export KUBEFLOW_NAMESPACE="your-namespace"
export KUBEFLOW_EXPERIMENT_NAME="trustyai-garak-scans"
export KUBEFLOW_BASE_IMAGE="quay.io/rh-ee-spandraj/trustyai-garak-provider-dsp:cpu" # for gpu - "quay.io/rh-ee-spandraj/trustyai-garak-provider-dsp:gpu"

# S3 Configuration (for artifacts)
export AWS_ACCESS_KEY_ID="your-key"
export AWS_SECRET_ACCESS_KEY="your-secret"
export AWS_S3_ENDPOINT="https://your-s3-endpoint"
export AWS_S3_BUCKET="pipeline-artifacts"
export AWS_DEFAULT_REGION="us-east-1"

# Start server
llama stack run run-remote.yaml --image-type venv

Note: If you're running Llama Stack server locally, make sure BASE_URL in run-remote*.yaml is accessible from KFP pods (you can use ngrok to create an accessible endpoint for your local Llama stack service).

Usage

# Same API, runs as KFP pipeline
job = client.eval.run_eval(benchmark_id="trustyai_garak::owasp_llm_top10", ...)

# Monitor pipeline
status = client.eval.jobs.status(job_id=job.job_id, benchmark_id="trustyai_garak::owasp_llm_top10")
print(f"KFP Run ID: {status.metadata['kfp_run_id']}")

Configuration Reference

Provider Config (run.yaml)

providers:
  eval:
    - provider_id: trustyai_garak
      config:
        base_url: ${env.BASE_URL:=http://localhost:8321/v1}
        timeout: ${env.GARAK_TIMEOUT:=10800}
        max_concurrent_jobs: ${env.GARAK_MAX_CONCURRENT_JOBS:=5}
        max_workers: ${env.GARAK_MAX_WORKERS:=5}

Environment Variables

Variable Default Description
BASE_URL http://localhost:8321/v1 Llama Stack service URL
GARAK_TIMEOUT 10800 Max scan timeout (seconds)
GARAK_MAX_CONCURRENT_JOBS 5 Max concurrent scans
GARAK_MAX_WORKERS 5 Shield scanning parallelism

Deployment Modes

Mode Config File Features
Basic run.yaml Standard scanning
Enhanced run-with-safety.yaml + Shield integration
Remote run-remote.yaml KFP execution
Remote+Safety run-remote-safety.yaml + Shield integration

Result Interpretation

  • Score Range: 0.0 (secure) to 1.0 (vulnerable)
  • Threshold: Scores ≥ 0.5 indicate security concerns
  • Reports: Available in JSON, HTML, and log formats via Files API

Examples & Demos

Notebook Description
01-getting_started Basic usage and custom probes
02-scan_with_shields Shield integration testing
03-remote_garak KFP remote execution

About

Out-Of-Tree Llama Stack Eval Provider for Red Teaming LLM Systems with Garak

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published