@@ -419,10 +419,10 @@ def __init__(self, tree_sequence, progress=False):
419
419
420
420
self .ts = tree_sequence
421
421
self .sample_node_set = set (self .ts .samples ())
422
- if np .any (self .ts .tables .nodes .time [self .ts .samples ()] != 0 ):
423
- raise ValueError (
424
- "The SpansBySamples class needs a tree seq with all samples at time 0"
425
- )
422
+ # if np.any(self.ts.tables.nodes.time[self.ts.samples()] != 0):
423
+ # raise ValueError(
424
+ # "The SpansBySamples class needs a tree seq with all samples at time 0"
425
+ # )
426
426
self .progress = progress
427
427
428
428
# We will store the spans in here, and normalize them at the end
@@ -1042,19 +1042,19 @@ def build_grid(
1042
1042
"Can't set approx_prior_size if approximate_prior is False"
1043
1043
)
1044
1044
1045
- contmpr_ts , node_map = util .reduce_to_contemporaneous (tree_sequence )
1046
- if contmpr_ts .num_nodes != tree_sequence .num_nodes :
1047
- raise ValueError (
1048
- "Passed tree sequence is not simplified and/or contains "
1049
- "noncontemporaneous samples"
1050
- )
1051
- span_data = SpansBySamples (contmpr_ts , progress = progress )
1045
+ # contmpr_ts, node_map = util.reduce_to_contemporaneous(tree_sequence)
1046
+ # if contmpr_ts.num_nodes != tree_sequence.num_nodes:
1047
+ # raise ValueError(
1048
+ # "Passed tree sequence is not simplified and/or contains "
1049
+ # "noncontemporaneous samples"
1050
+ # )
1051
+ span_data = SpansBySamples (tree_sequence , progress = progress )
1052
1052
1053
1053
base_priors = ConditionalCoalescentTimes (
1054
1054
approx_prior_size , Ne , prior_distribution , progress = progress
1055
1055
)
1056
1056
1057
- base_priors .add (contmpr_ts .num_samples , approximate_priors )
1057
+ base_priors .add (tree_sequence .num_samples , approximate_priors )
1058
1058
for total_fixed in span_data .total_fixed_at_0_counts :
1059
1059
# For missing data: trees vary in total fixed node count => have different priors
1060
1060
if total_fixed > 0 :
@@ -1078,9 +1078,9 @@ def build_grid(
1078
1078
else :
1079
1079
raise ValueError ("time_slices must be an integer or a numpy array of floats" )
1080
1080
1081
- prior_params_contmpr = base_priors .get_mixture_prior_params (span_data )
1081
+ prior_params = base_priors .get_mixture_prior_params (span_data )
1082
1082
# Map the nodes in the prior params back to the node ids in the original ts
1083
- prior_params = prior_params_contmpr [node_map , :]
1083
+ # prior_params = prior_params_contmpr[node_map, :]
1084
1084
# Set all fixed nodes (i.e. samples) to have 0 variance
1085
1085
priors = fill_priors (
1086
1086
prior_params ,
0 commit comments