Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 55 additions & 13 deletions run_pplm.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,24 @@
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel

from transformers import (
AutoModelWithLMHead,
AutoTokenizer,
CTRLLMHeadModel,
CTRLTokenizer,
GPT2LMHeadModel,
GPT2Tokenizer,
OpenAIGPTLMHeadModel,
OpenAIGPTTokenizer,
TransfoXLLMHeadModel,
TransfoXLTokenizer,
XLMTokenizer,
XLMWithLMHeadModel,
XLNetLMHeadModel,
XLNetTokenizer,
)

from pplm_classification_head import ClassificationHead

Expand Down Expand Up @@ -86,7 +101,6 @@
},
}


def to_var(x, requires_grad=False, volatile=False, device='cuda'):
if torch.cuda.is_available() and device == 'cuda':
x = x.cuda()
Expand Down Expand Up @@ -373,11 +387,18 @@ def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) ->
filepath = id_or_path
with open(filepath, "r") as f:
words = f.read().strip().split("\n")
bow_indices.append(
[tokenizer.encode(word.strip(),
add_prefix_space=True,
add_special_tokens=False)
for word in words])

if isinstance(tokenizer, GPT2Tokenizer):
def tokenizer_encode(word):
return tokenizer.encode(word.strip(),
add_prefix_space=True,
add_special_tokens=False)
else:
def tokenizer_encode(word):
return tokenizer.encode(word.strip(),
add_special_tokens=False)

bow_indices.append([tokenizer_encode(word) for word in words])
return bow_indices


Expand Down Expand Up @@ -561,7 +582,7 @@ def generate_text_pplm(
if past is None and output_so_far is not None:
last = output_so_far[:, -1:]
if output_so_far.shape[1] > 1:
_, past, _ = model(output_so_far[:, :-1])
past = model(output_so_far[:, :-1])[1]

unpert_logits, unpert_past, unpert_all_hidden = model(output_so_far)
unpert_last_hidden = unpert_all_hidden[-1]
Expand Down Expand Up @@ -727,17 +748,17 @@ def run_pplm_example(
"to discriminator's = {}".format(discrim, pretrained_model))

# load pretrained model
model = GPT2LMHeadModel.from_pretrained(
model = AutoModelWithLMHead.from_pretrained(
pretrained_model,
output_hidden_states=True
)
model.to(device)
model.eval()

# load tokenizer
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)

# Freeze GPT-2 weights
# Freeze pretrained model's weights
for param in model.parameters():
param.requires_grad = False

Expand Down Expand Up @@ -844,8 +865,25 @@ def run_pplm_example(

return

def test():
run_pplm_example(
pretrained_model="gpt2-medium",
# pretrained_model="xlnet-large-cased",
cond_text="The potato",
num_samples=3,
bag_of_words='military',
length=50,
stepsize=0.03,
sample=True,
num_iterations=3,
window_length=5,
gamma=1.5,
gm_scale=0.95,
kl_scale=0.01,
verbosity='regular'
)

if __name__ == '__main__':
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_model",
Expand Down Expand Up @@ -934,3 +972,7 @@ def run_pplm_example(

args = parser.parse_args()
run_pplm_example(**vars(args))

if __name__ == '__main__':
# main()
test()