Simple DIY neural network to understand backpropogation algorithm
This project is organized into two main directories:
java/- Java implementations using Maven multi-module structurepython/- Python implementations with modern packaging
Added a standalone Maven module in java/modern-ml that trains a tiny MLP to solve XOR using Deeplearning4J and ND4J.
Run it:
cd java/modern-ml
mvn -q -DskipTests exec:javaMain class: org.example.Deeplearning4JPerceptron
This repo is now a Maven multi-module project with:
java/legacy: builds the existing sources underNeural Network/srcjava/modern-ml: Deeplearning4J XOR example
Build everything from the java directory:
cd java
mvn -q -DskipTests packageRun legacy (original) app:
cd java/legacy
mvn -q -DskipTests exec:javaRun legacy but invoke modern DL4J example via Main argument:
cd java/legacy
mvn -q -DskipTests exec:java -Dexec.args=dl4jThe Python directory contains scaffolding for neural network implementations. See python/README.md for more details.
To get started:
cd python
pip install -r requirements.txt