Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 152 additions & 0 deletions ann.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
# Artificial Neural Network

# Installing Theano
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

# Installing Tensorflow
# pip install tensorflow

# Installing Keras
# pip install --upgrade keras

# Part 1 - Data Preprocessing

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values

# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]

# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Part 2 - Now let's make the ANN!

# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout

# Initialising the ANN
classifier = Sequential()

# Adding the input layer and the first hidden layer with dropout
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
classifier.add(Dropout(p = 0.1))

# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dropout(p = 0.1))

# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)

# Part 3 - Making predictions and evaluating the model

# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)

# Predicting a single new observation
"""Predict if the customer with the following informations will leave the bank:
Geography: France
Credit Score: 600
Gender: Male
Age: 40
Tenure: 3
Balance: 60000
Number of Products: 2
Has Credit Card: Yes
Is Active Member: Yes
Estimated Salary: 50000"""
new_prediction = classifier.predict(sc.transform(np.array([[0.0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])))
new_prediction = (new_prediction > 0.5)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

# Part 4 - Evaluating, Improving and Tuning the ANN

# Evaluating the ANN
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from keras.models import Sequential
from keras.layers import Dense
def build_classifier():
classifier = Sequential()
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, epochs = 100)
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10, n_jobs = 1)
mean = accuracies.mean()
variance = accuracies.std()

#Improving the ANN
#Dropout Regularization to reduce overfitting if needed


#Tuning the ANN
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
def build_classifier(optimizer):
classifier = Sequential()
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
classifier.compile(optimizer = optimizer, loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier)
parameters = {'batch_size' : [25, 32],
'nb_epochs' : [100, 500],
'optimizer' : ['adam', 'rmsprop']}
grid_search = GridSearchCV(estimator = classifier,
param_grid = parameters,
scoring = 'accuracy',
cv = 10)
grid_search = grid_search.fit(X_train, y_train)
best_parammeters = grid_search.best_params_
best_accuracy = grid_search.best_score_










101 changes: 101 additions & 0 deletions floydWarshal.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
// Input:
// graph[][] = { {0, 5, INF, 10},
// {INF, 0, 3, INF},
// {INF, INF, 0, 1},
// {INF, INF, INF, 0} }
// which represents the following graph
// 10
// (0)------->(3)
// | /|\
// 5 | |
// | | 1
// \|/ |
// (1)------->(2)
// 3
// Note that the value of graph[i][j] is 0 if i is equal to j
// And graph[i][j] is INF (infinite) if there is no edge from vertex i to j.

// Output:
// Shortest distance matrix
// 0 5 8 9
// INF 0 3 4
// INF INF 0 1
// INF INF INF 0





// C++ Program for Floyd Warshall Algorithm
#include <bits/stdc++.h>
using namespace std;
#define V 4

#define INF 99999


void printSolution(int dist[][V]);

void floydWarshall (int graph[][V])
{

for (i = 0; i < V; i++)
for (j = 0; j < V; j++)
dist[i][j] = graph[i][j];


for (k = 0; k < V; k++)
{
// Pick all vertices as source one by one
for (i = 0; i < V; i++)
{
// Pick all vertices as destination for the
// above picked source
for (j = 0; j < V; j++)
{
// If vertex k is on the shortest path from
// i to j, then update the value of dist[i][j]
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}

// Print the shortest distance matrix
printSolution(dist);
}

/* A utility function to print solution */
void printSolution(int dist[][V])
{
cout<<"The following matrix shows the shortest distances"
" between every pair of vertices \n";
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (dist[i][j] == INF)
cout<<"INF"<<" ";
else
cout<<dist[i][j]<<" ";
}
cout<<endl;
}
}

// Driver code
int main()
{

int graph[V][V] = { {0, 5, INF, 10},
{INF, 0, 3, INF},
{INF, INF, 0, 1},
{INF, INF, INF, 0}
};

// Print the solution
floydWarshall(graph);
return 0;
}

// This code is contributed by aanchal singh