Skip to content

urban-mobility-generation/Language-Modeling-for-Urban-Mobility

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Awesome Language Modeling for Urban Mobility

Language Modeling for Urban Mobility: A Data-Centric Review and Guidelines. Paper DOI

01-Data

This repository contains a collection of resources and papers on applying language modeling paradigms to urban mobility scenarios. If you find this repo is useful, please cite our paper [bib].

00-intro

We propose a comprehensive and data-centric survey of language modeling for urban mobility, structured along three key dimensions:

  • (i) How to transform heterogeneous mobility data into language model–like formats through tokenization, encoding, and prompting;
  • (ii) How to choose among different categories of language models, ranging from pretrained language models, large language models (LLMs), MLLMs, and diffusion models;
  • (iii) What are the advantages of applying language modeling to urban mobility in diverse urban downstream tasks?

Contents

Mobility Research in Nature, Science, and PNAS Series Journals

  • [Science 2010] Network Diversity and Economic Development [paper]
  • [Science 2015] Predicting poverty and wealth from mobile phone metadata [paper]
  • [Nature 2021] The universal visitation law of human mobility [paper]
  • [Nature 2022] Machine learning and phone data can improve targeting of humanitarian aid [paper]
  • [Nature Machine Intelligence 2022] Quantifying the spatial homogeneity of urban road networks via graph neural networks [paper]
  • [Nature Computational Science 2023] Future directions in human mobility science [paper]
  • [Nature Communications 2024] Similarity and economy of scale in urban transportation networks and optimal transport-based infrastructures [paper]
  • [Nature Communications 2024] Unravelling the spatial directionality of urban mobility [paper]
  • [Nature Cities 2024] Infrequent activities predict economic outcomes in major American cities [paper]
  • [HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS 2024] Neural embeddings of urban big data reveal spatial structures in cities [paper]
  • [HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS 2024] Counterfactual mobility network embedding reveals prevalent accessibility gaps in U.S. cities [paper]
  • [Nature Cities 2024] Network constraints on worker mobility [paper]
  • [Nature Human Behaviour 2025] Using human mobility data to quantify experienced urban inequalities [paper]
  • [Nature Human Behaviour 2025] Behaviour-based dependency networks between places shape urban economic resilience [paper]
  • [Nature Communications 2025] Human mobility is well described by closed-form gravity-like models learned automatically from data [paper]

Related Survey

  • A survey on deep learning for human mobility (2021). [paper] [code]

    • Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, Luca Pappalardo
  • MobilityDL: a review of deep learning from trajectory data (2025). [paper] [code]

    • Anita Graser, Anahid Jalali, Jasmin Lampert, Axel Weißenfeld, Krzysztof Janowicz
  • Deep learning for trajectory data management and mining: A survey and beyond (2024). [paper] [code]

    • Wei Chen, Yuxuan Liang, Yuanshao Zhu, Yanchuan Chang, Kang Luo, Haomin Wen, Lei Li, Yanwei Yu, Qingsong Wen, Chao Chen, et al.
  • A survey of large language models for traffic forecasting: Methods and applications (2025). [paper]

    • Qingqing Long, Shuai Liu, Ning Cao, Zhicheng Ren, Wei Ju, Chen Fang, Zhihong Zhu, Hengshu Zhu, Yuanchun Zhou
  • Large language models for mobility analysis in transportation systems: A survey on forecasting tasks (2024). [paper]

    • Zijian Zhang, Yujie Sun, Zepu Wang, Yuqi Nie, Xiaobo Ma, Ruolin Li, Peng Sun, Xuegang Ban
  • Large Language Models for Urban Mobility (2025). [paper]

    • Youssef Hussein, Mohamed Hemdan, Mohamed F Mokbel
  • Large models for time series and spatio-temporal data: A survey and outlook (2023). [paper] [code]

    • Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li, et al.
  • Foundation models for spatio-temporal data science: A tutorial and survey (2025). [paper]

    • Yuxuan Liang, Haomin Wen, Yutong Xia, Ming Jin, Bin Yang, Flora Salim, Qingsong Wen, Shirui Pan, Gao Cong
  • Unraveling Spatio-Temporal Foundation Models via the Pipeline Lens: A Comprehensive Review (2025). [paper] [code]

    • Yuchen Fang, Hao Miao, Yuxuan Liang, Liwei Deng, Yue Cui, Ximu Zeng, Yuyang Xia, Yan Zhao, Torben Bach Pedersen, Christian S Jensen, et al.
  • How can time series analysis benefit from multiple modalities? a survey and outlook (2025). [paper] [code]

    • Haoxin Liu, Harshavardhan Kamarthi, Zhiyuan Zhao, Shangqing Xu, Shiyu Wang, Qingsong Wen, Tom Hartvigsen, Fei Wang, B Aditya Prakash
  • Multi-modal time series analysis: A tutorial and survey (2025). [paper] [code]

    • Yushan Jiang, Kanghui Ning, Zijie Pan, Xuyang Shen, Jingchao Ni, Wenchao Yu, Anderson Schneider, Haifeng Chen, Yuriy Nevmyvaka, Dongjin Song
  • Urban computing in the era of large language models (2025). [paper] [code]

    • Zhonghang Li, Lianghao Xia, Xubin Ren, Jiabin Tang, Tianyi Chen, Yong Xu, Chao Huang
  • Towards urban general intelligence: A review and outlook of urban foundation models (2024). [paper]

    • Weijia Zhang, Jindong Han, Zhao Xu, Hang Ni, Hao Liu, Hui Xiong

Related Paper Lists

1. Discrete Mobility Sequence

02-discrete

1.1 Tokenization

1.1.1 Pretrained LM

  • Attention

    • MoveSim (feng2020learning) Learning to simulate human mobility. KDD, 2020. [paper] [code]
    • TPG (luo2023timestamps) Timestamps as prompts for geography-aware location recommendation. CIKM, 2023. [paper]
  • Masked LM

    • CTLE (lin2021pre) Pre-training context and time aware location embeddings from spatial-temporal trajectories for user next location prediction. AAAI, 2021. [paper]
    • Wepos (guo2022wepos) Wepos: Weak-supervised indoor positioning with unlabeled wifi for on-demand delivery. IMWUT, 2022. [paper]
    • Yang et al. (yang2024applying) Applying masked language model for transport mode choice behavior prediction. TR-A, 2024. [paper]
    • GREEN (zhou2025grid) Grid and road expressions are complementary for trajectory representation learning. KDD, 2025. [paper] [code]
    • TrajBERT (trajbert2023) TrajBERT: BERT-Based Trajectory Recovery with Spatial-Temporal Refinement. TMC, 2023. [paper]
  • Transformer Decoder

    • MobilityGPT (mobilitygpt2024) MobilityGPT: Enhanced Human Mobility Modeling with a GPT model. [paper] [code]
    • GeoFormer (solatorio2023geoformer) GeoFormer: predicting human mobility using generative pre-trained transformer (GPT). 2023. [paper] [code]
    • LMTAD (mbuya2024trajectory) Trajectory Anomaly Detection with Language Models. SIGSPATIAL, 2024. [paper] [code]
    • Kobayashi et al. (kobayashi2023modeling) Modeling and generating human mobility trajectories using transformer with day encoding. 2023. [paper]
    • Traj-LLM (lan2024traj) Traj-llm: A new exploration for empowering trajectory prediction with pre-trained large language models. IEEE Transactions on Intelligent Vehicle, 2024. [paper]
    • TrajLearn (nadiri2025trajlearn) TrajLearn: Trajectory Prediction Learning using Deep Generative Models. ACM Transactions on Spatial Algorithms and Systems, 2025. [paper] [code]

1.1.2 LLM

  • GNPR-SID (wang2025generativekdd25) Generative Next POI Recommendation with Semantic ID. KDD, 2025. [paper] [code]
  • RHYTHM (he2025rhythm) RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility. arXiv, 2025. [paper] [code]
  • MobGLM (zhang2024mobglm) MobGLM: A Large Language Model for Synthetic Human Mobility Generation. SIGSPATIAL, 2024. [paper]
  • MobilityGPT (mobilitygpt2024) MobilityGPT: Enhanced Human Mobility Modeling with a GPT model. [paper] [code]
  • Geo-Llama (li2024geo) Geo-llama: Leveraging llms for human mobility trajectory generation with spatiotemporal constraints. MDM, 2025. [paper] [code]

1.2 Encoding

1.2.1 Attention-based

  • Deepmove (feng2018deepmove) DeepMove: Predicting human mobility with attentional recurrent networks. WWW, 2018. [paper]
  • STRNN (liu2016predicting) Predicting the next location: A recurrent model with spatial and temporal contexts. AAAI, 2016. [paper]
  • LSTPM (sun2020go) Where to go next: Modeling long-and short-term user preferences for point-of-interest recommendation. AAAI, 2020. [paper]
  • STAN (Luo2021stan) STAN: Spatio-Temporal Attention Network for Next Location Recommendation. WWW, 2021. [paper] [code]

1.2.2 Pretrained LM

  • Masked LM

    • LP-BERT (suzuki2024cross) Cross-city-aware Spatiotemporal BERT. SIGSPATIAL, 2024. [paper]
    • TraceBERT (crivellari2022tracebert) Tracebert—a feasibility study on reconstructing spatial--temporal gaps from incomplete motion trajectories via bert training process on discrete location sequences. Sensors, 2022. [paper]
    • CTLE (lin2021pre) Pre-training context and time aware location embeddings from spatial-temporal trajectories for user next location prediction. AAAI, 2021. [paper]
    • GREEN (zhou2025grid) Grid and road expressions are complementary for trajectory representation learning. KDD, 2025. [paper] [code]
  • Causal Attention

    • MobTCast (xue2021mobtcast) MobTCast: Leveraging auxiliary trajectory forecasting for human mobility prediction. NeurIPS, 2021. [paper]
    • AttnMove (xia2021attnmove) Attnmove: History enhanced trajectory recovery via attentional network. AAAI, 2021. [paper] [code]

1.2.3 LLM

  • LLMEmb (liu2025llmemb) Llmemb: Large language model can be a good embedding generator for sequential recommendation. AAAI, 2025. [paper] [code]
  • Mobility-LLM (mobilityllm2024) Mobility-llm: Learning visiting intentions and travel preference from human mobility data with large language models. NeurIPS, 2024. [paper] [code]
  • NextLocLLM (nextlocllm2025) NextlocLLM: Next Location Prediction Using LLMs. arXiv, 2025. [paper] [code]
  • GSTM-HMU (luo2025gstm) GSTM-HMU: Generative Spatio-Temporal Modeling for Human Mobility Understanding. arXiv, 2025. [paper]

1.2.4 Diffusion Model

  • Cardiff (guo2025leveraging) Leveraging the Spatial Hierarchy: Coarse-to-fine Trajectory Generation via Cascaded Hybrid Diffusion. arXiv preprint arXiv:2507.13366, 2025. [paper] [code]
  • Diff-POI (qin2023diffusion) A Diffusion Model for POI Recommendation. ACM Transactions on Information Systems, 2023. [paper]
  • AutoSTDiff (xu2025autostdiff) AutoSTDiff: Autoregressive Spatio-Temporal Denoising Diffusion Model for Asynchronous Trajectory Generation. SIAM SDM, 2025. [paper] [code]
  • DiffMove (long2025diffmove) DiffMove: Group Mobility Tendency Enhanced Trajectory Recovery via Diffusion Model. arXiv preprint arXiv:2503.18302, 2025. [paper]
  • GenMove (long2025one) One Fits All: General Mobility Trajectory Modeling via Masked Conditional Diffusion. arXiv preprint arXiv:2501.13347, 2025. [paper]
  • Diff-DGMN (zuo2024diff) Diff-DGMN: A Diffusion-Based Dual Graph Multiattention Network for POI Recommendation. IEEE Internet of Things Journal, 2024. [paper] [code]
  • DCPR (long2024diffusion) Diffusion-Based Cloud-Edge-Device Collaborative Learning for Next POI Recommendations. KDD, 2024. [paper]
  • Traveller (luo2025traveller) Traveller: Travel-Pattern Aware Trajectory Generation via Autoregressive Diffusion Models. Information Fusion, 2025. [paper] [code]
  • TrajGDM (chu2024simulating) Simulating Human Mobility with a Trajectory Generation Framework Based on Diffusion Model. International Journal of Geographical Information Science, 2024. [paper] [code]

1.3 Prompting

03-prompt

1.3.1 LLM

  • As Representor

    • Poi-enhancer (cheng2025poi) Poi-enhancer: An LLM-based semantic enhancement framework for POI representation learning. AAAI, 2025. [paper] [code]
    • LLM-Mob (wang2023would) Where would i go next? large language models as human mobility predictors. arXiv preprint arXiv:2308.15197, 2023. [paper] [code]
    • TrajCogn (zhou2024trajcogn) TrajCogn: Leveraging LLMs for Cognizing Movement Patterns and Travel Purposes from Trajectories. arXiv preprint arXiv:2405.12459, 2024. [paper] [code]
  • As Predictor

    • TPP-LLM (liu2024tpp) Tpp-llm: Modeling temporal point processes by efficiently fine-tuning large language models. arXiv preprint arXiv:2410.02062, 2024. [paper] [code]
    • CoMaPOI (zhong2025comapoi) CoMaPOI: A Collaborative Multi-Agent Framework for Next POI Prediction Bridging the Gap Between Trajectory and Language. SIGIR, 2025. [paper] [code]
    • AgentMove (feng2024agentmove) Agentmove: A large language model based agentic framework for zero-shot next location prediction. NAACL, 2024. [paper] [code]
    • Feng et al. (feng2024move) Where to move next: Zero-shot generalization of llms for next poi recommendation. IEEE CAI, 2024. [paper] [code]
    • LLM4Poi (li2024large) Large language models for next point-of-interest recommendation. SIGIR, 2024. [paper] [code]
    • CSA-Rec (wang2025collaborative) Collaborative Semantics-Assisted Large Language Models for Next POI Recommendation. ICASSP, 2025. [paper]
    • LAMP (balsebre2024lamp) LAMP: A language model on the map. arXiv preprint arXiv:2403.09059, 2024. [paper] [code]
    • Zhang et al. (zhang2023large) Large Language Models for Spatial Trajectory Patterns Mining.(2023). ACM SIGSPATIAL International Workshop on Geospatial Anomaly Detection, 2024. [paper]
    • Mo et al. (mo2023large) Large language models for travel behavior prediction. arXiv preprint arXiv:2312.00819, 2023. [paper]
    • POI GPT (kim2024poi) POI GPT: Extracting POI information from social media text data. ISPRS Archives, 2024. [paper] [code]
    • Chen et al. (chen2025toward) Toward interactive next location prediction driven by large language models. IEEE Transactions on Computational Social Systems, 2025. [paper]
    • DelayPTC-LLM (chen2024delayptc) Delayptc-llm: Metro passenger travel choice prediction under train delays with large language models. arXiv preprint arXiv:2410.00052, 2024. [paper]
  • Generator

    • Liu et al. (liu2025aligning) Aligning LLM agents with human learning and adjustment behavior: a dual agent approach. arXiv, 2025. [paper]
    • CoPB (shao2024chain) Chain-of-planned-behaviour workflow elicits few-shot mobility generation in llms. arXiv, 2024. [paper] [code]
    • Liu et al. (liu2023can) Can language models be used for real-world urban-delivery route optimization?. The Innovation, 2023. [paper]
    • Bhandari et al. (bhandari2024urban) Urban mobility assessment using llms. SIGSPATIAL, 2024. [paper]
    • Zheng et al. (zheng2025urban) Urban planning in the era of large language models. Nature computational science, 2025. [paper]
  • LLM Agents

    • LLM-HABG (meng2025behavior) Behavior Generation for Heterogeneous Agents in Urban Simulation Deduction: A Multi-Stage Approach Based on Large Language Models. CCSSTA, 2025. [paper]
    • PathGPT (marcelyn2025pathgpt) PathGPT: Leveraging Large Language Models for Personalized Route Generation. arXiv preprint arXiv:2504.05846, 2025. [paper] [code]
    • LLMTraveler (wang2024ai) Ai-driven day-to-day route choice. arXiv preprint arXiv:2412.03338, 2024. [paper] [code]
    • GATSim (liu2025gatsim) GATSim: Urban Mobility Simulation with Generative Agents. arXiv preprint arXiv:2506.23306, 2025. [paper] [code]
    • MobAgent (li2024more) Be more real: Travel diary generation using llm agents and individual profiles. arXiv preprint arXiv:2407.18932, 2024. [paper]
    • CitySim (bougie2025citysim) CitySim: Modeling Urban Behaviors and City Dynamics with Large-Scale LLM-Driven Agent Simulation. EMNLP, 2025. [paper]
    • TravelPlanner (xie2024travelplanner) Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint arXiv:2402.01622, 2024. [paper] [code]
    • IDM-GPT (yang2025independent) Independent mobility gpt (idm-gpt): A self-supervised multi-agent large language model framework for customized traffic mobility analysis using machine learning models. arXiv preprint arXiv:2502.18652, 2025. [paper]

2. Continuous Mobility Sequence

04-continuous

2.1 Discrete Tokenization (Quantization)

2.1.1 Pretrained LM

  • Encoder-based (BERT-like)

    • Giuliari (giuliari2021transformer) Transformer networks for trajectory forecasting. ICPR, 2021. [paper] [code]
    • BERT4Traj (yang2025bert4traj) BERT4Traj: Transformer Based Trajectory Reconstruction for Sparse Mobility Data. arXiv preprint arXiv:2507.03062, 2025. [paper]
  • Decoder-based (GPT-like)

    • MotionLM (seff2023motionlm) MotionLM: Multi-agent motion forecasting as language modeling. ICCV, 2023. [paper]
    • RAW (zhang2023regions) Regions are who walk them: a large pre-trained spatiotemporal model based on human mobility for ubiquitous urban sensing. arXiv preprint arXiv:2311.10471, 2023. [paper] [code]
  • Encoder–Decoder-based

    • UniTraj (zhu2024unitraj) UniTraj: Learning a universal trajectory foundation model from billion-scale worldwide traces. arXiv preprint arXiv:2411.03859, 2024. [paper] [code]

2.1.2 LLM

  • LMTraj (bae2024can) Can language beat numerical regression? language-based multimodal trajectory prediction. CVPR, 2024. [paper] [[code]](https: //github.com/inhwanbae/LMTrajectory)
  • RouteLLM (hallgarten2025routellm) RouteLLM: A Large Language Model with Native Route Context Understanding to Enable Context-Aware Reasoning. IMWUT, 2025. [paper] [code]
  • QT-Mob (chen2025enhancing) Enhancing Large Language Models for Mobility Analytics with Semantic Location Tokenization. KDD, 2025. [paper] [code]
  • CAMS (du2025cams) CAMS: A CityGPT-Powered Agentic Framework for Urban Human Mobility Simulation. arXiv preprint arXiv:2506.13599, 2025. [paper]
  • AutoTimes (liu2024autotimes) AutoTimes: Autoregressive time series forecasters via large language models. NeurIPS, 2024. [paper] [code]

2.2 Encoding

2.2.1 Pretrained LM

  • BERT4Traj (yang2025bert4traj) BERT4Traj: Transformer Based Trajectory Reconstruction for Sparse Mobility Data. arXiv preprint arXiv:2507.03062, 2025. [paper]
  • EETG-SVAE (zhang2025end) End-to-end Trajectory Generation - Contrasting Deep Generative Models and Language Models. ACM Transactions on Spatial Algorithms and Systems, 2025. [paper]
  • Musleh et al. (musleh2022towards) Towards a Unified Deep Model for Trajectory Analysis. SIGSPATIAL, 2022. [paper]
  • UrbanGPT (li2024urbangpt) UrbanGPT: Spatio-Temporal Large Language Models. KDD, 2024. [paper] [code]
  • UniST (yuan2024unist) UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction. KDD, 2024. [paper] [code]
  • FlashST (li2024flashst) FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction. arXiv preprint arXiv:2405.17898, 2024. [paper] [code]
  • Traffic-Twitter Transformer (tsai2022traffic) Traffic-Twitter Transformer: A Nature Language Processing-joined Framework for Network-wide Traffic Forecasting. arXiv preprint arXiv:2206.11078, 2022. [paper]
  • FlowDistill (yu2025flowdistill) FlowDistill: Scalable Traffic Flow Prediction via Distillation from LLMs. arXiv preprint arXiv:2504.02094, 2025. [paper] [code]
  • Cao et al. (cao2021bert) BERT-Based Deep Spatial-Temporal Network for Taxi Demand Prediction. T-ITS, 2021. [paper]
  • Ma et al. (ma2025urban) Urban rail transit passenger flow prediction using large language model under multi-source spatiotemporal data fusion. Physica A: Statistical Mechanics and its Applications, 2025. [paper]
  • TrafficBERT (jin2021trafficbert) TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting. Expert Systems with Applications, 2021. [paper]
  • ST-LLM+ (liu2025st) ST-LLM+: Graph Enhanced Spatio-Temporal Large Language Models for Traffic Prediction. IEEE Transactions on Knowledge and Data Engineering, 2025. [paper] [code]
  • MDTI (liu2025multimodal) Multimodal Trajectory Representation Learning for Travel Time Estimation. arXiv preprint arXiv:2510.05840, 2025. [paper] [code]

2.2.2 LLM

  • TPLLM (ren2024tpllm) TPLLM: A traffic prediction framework based on pretrained large language models. arXiv preprint arXiv:2403.02221, 2024. [paper]
  • LLM-TFP (cheng2025llm) LLM-TFP: Integrating large language models with spatio-temporal features for urban traffic flow prediction. Applied Soft Computing, 2025. [paper] [code]
  • Liao et al. (liao2025next) Next-Generation Travel Demand Modeling with a Generative Framework for Household Activity Coordination. arXiv preprint arXiv:2507.08871, 2025. [paper]

2.3 Prompting

2.3.1 LLM

  • Representation and Mining

    • Zhang et al. (zhang2024large) Large language models for spatial trajectory patterns mining. SIGSPATIAL, 2024. [paper] [code]
    • GPT-J (ji2024evaluating) Evaluating the Effectiveness of Large Language Models in Representing and Understanding Movement Trajectories. arXiv preprint arXiv:2409.00335, 2024. [paper]
    • GeoLLM (manvi2023geollm) Geollm: Extracting geospatial knowledge from large language models. arXiv preprint arXiv:2310.06213, 2023. [paper] [code]
    • AuxMobLCast (xue2022leveraging) Leveraging language foundation models for human mobility forecasting. SIGSPATIAL, 2022. [paper] [code]
    • Wang et al. (wang2025event) Event-aware analysis of cross-city visitor flows using large language models and social media data. arXiv preprint arXiv:2505.03847, 2025. [paper]
  • Prediction

    • LLM-MPE (liang2024exploring) Exploring large language models for human mobility prediction under public events. Computers, Environment and Urban Systems, 2024. [paper]
    • STCInterLLM (li2025causal) Causal Intervention Is What Large Language Models Need for Spatio-Temporal Forecasting. IEEE Transactions on Cybernetics, 2025. [paper] [code]
    • xTP-LLM (guo2024towards) Towards explainable traffic flow prediction with large language models. Communications in Transportation Research, 2024. [paper] [code]
    • Cai et al. (cai2024temporal) Temporal-Spatial Traffic Flow Prediction Model Based on Prompt Learning. ISPRS International Journal of Geo-Information, 2025. [paper]
    • LLM4PT (wu2025llm4pt) LLM4PT: A large language model-based system for flexible and explainable public transit demand prediction. Computers & Industrial Engineering, 2025. [paper]
    • TransLLM (leng2025transllm) TransLLM: A Unified Multi-Task Foundation Framework for Urban Transportation via Learnable Prompting. arXiv preprint arXiv:2508.14782, 2025. [paper] [code]
  • Generation

    • LLMob (jiawei2024large) Large language models as urban residents: An llm agent framework for personal mobility generation. NeurIPS, 2024. [paper] [code]

2.4 Featurization

2.4.1 Diffusion Model

  • CoDiffMob (codiffmob2025) Noise Matters: Diffusion Model-Based Urban Mobility Generation with Collaborative Noise Priors. WWW, 2025. [paper] [code]
  • ControlTraj (zhu2024controltraj) ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model. KDD, 2024. [paper] [code]
  • DiffTraj (difftraj2023) DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model. NeurIPS, 2023. [paper] [code]
  • Cardiff (guo2025leveraging) Leveraging the Spatial Hierarchy: Coarse-to-fine Trajectory Generation via Cascaded Hybrid Diffusion. arXiv preprint arXiv:2507.13366, 2025. [paper] [code]
  • UniMob (long2025universal) A Universal Model for Human Mobility Prediction. KDD, 2025. [paper] [code]

3. Graph-type Mobility

05-graph

3.1 Tokenization

3.1.1 Pretrained LM

  • UniFlow (yuan2024uniflow) UniFlow: A Foundation Model for Unified Urban Spatio-Temporal Flow Prediction. arXiv preprint arXiv:2411.12972, 2024. [paper] [code]
  • RePST (wang2024repst) RePST: Language Model Empowered Spatio-Temporal Forecasting via Semantic-Oriented Reprogramming. IJCAI, 2025. [paper] [code]
  • CompactST (han2025scalable) Scalable Pre-Training of Compact Urban Spatio-Temporal Predictive Models on Large-Scale Multi-Domain Data. VLDB, 2025. [paper] [code]
  • STD-PLM (huang2025std) Std-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM. AAAI, 2025. [paper] [code]

3.1.2 LLM

  • STG-LLM (liu2024can) Can Large Language Models Capture Human Travel Behavior? Evidence and Insights on Mode Choice. SSRN, 2024. [paper]
  • ST-LLM (liu2024spatial) Spatial-Temporal Large Language Model for Traffic Prediction. MDM, 2024. [paper] [code]

3.2 Encoding

3.2.1 Pretrained LM

  • STGormer (zhou2024navigating) Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting. arXiv preprint arXiv:2408.10822, 2024. [paper] [code]
  • STGLLM-E (rong2024edge) Edge Computing Enabled Large-Scale Traffic Flow Prediction With GPT in Intelligent Autonomous Transport System for 6G Network. T-ITS, 2024. [paper]
  • CityCAN (wang2024citycan) CityCAN: Causal Attention Network for Citywide Spatio-Temporal Forecasting. WSDM, 2024. [paper]
  • STTNs (xu2020spatial) Spatial-Temporal Transformer Networks for Traffic Flow Forecasting. arXiv preprint arXiv:2001.02908, 2020. [paper]
  • ST-LINK (jeon2025st) ST-LINK: Spatially-Aware Large Language Models for Spatio-Temporal Forecasting. CIKM, 2025. [paper] [code]

3.2.2 LLM

  • UrbanGPT (li2024urbangpt) UrbanGPT: Spatio-temporal large language models. KDD, 2024. [paper] [code]

3.3 Prompting

3.3.1 LLM

  • LEAF (zhao2024embracing) Embracing large language models in traffic flow forecasting. Findings of the Association for Computational Linguistics: ACL 2025, 2025. [paper] [code]
  • LLMCOD (yu2024harnessing) Harnessing llms for cross-city od flow prediction. SIGSPATIAL, 2024. [paper]
  • TraffiCoT-R (alsahfi2025trafficot) TraffiCoT-R: A framework for advanced spatio-temporal reasoning in large language models. Alexandria Engineering Journal, 2025. [paper]

3.4 Featurization

3.4.1 Diffusion Model

  • DiffODGen (rong2023complexity) Complexity-aware large scale origin-destination network generation via diffusion model. arXiv preprint arXiv:2306.04873, 2023. [paper]
  • OpenDiff (chai2024diffusion) Diffusion model-based mobile traffic generation with open data for network planning and optimization. KDD, 2024. [paper] [code]
  • Rong et al. (ronglarge) A Large-scale Dataset and Benchmark for Commuting Origin-Destination Flow Generation. ICLR, 2025. [paper] [code]

4. Multimodal Mobility Data

06-multimodal

4.1 Vision and Trajectory

  • UrbanLLaVA (feng2025urbanllava) UrbanLLaVA: A Multi-modal Large Language Model for Urban Intelligence with Spatial Reasoning and Understanding. arXiv preprint arXiv:2506.23219, 2025. [paper] [code]
  • Traj-MLLM (liu2025traj) Traj-MLLM: Can Multimodal Large Language Models Reform Trajectory Data Mining?. arXiv preprint arXiv:2509.00053, 2025. [paper]
  • Flame (xu2025flame) Flame: Learning to Navigate with Multimodal LLM in Urban Environments. AAAI, 2025. [paper] [code]
  • VLMLocPredictor (zhang2025eyes) Eyes Will Shut: A Vision-Based Next GPS Location Prediction Model by Reinforcement Learning from Visual Map Feed Back. arXiv preprint arXiv:2507.18661, 2025. [paper] [code]
  • MapGPT (chen2024mapgpt) MapGPT: Map-guided Prompting with Adaptive Path Planning for Vision-and-Language Navigation. Annual Meeting of the Association for Computational Linguistics, 2024. [paper] [code]
  • UGI (xu2023urban) Urban Generative Intelligence (UGI): A Foundational Platform for Agents in Embodied City Environment. arXiv preprint arXiv:2312.11813, 2023. [paper] [code]
  • CityBench (feng2025citybench) CityBench: Evaluating the Capabilities of Large Language Models as World Models for Urban Tasks. KDD, 2025. [paper] [code]
  • LLM-enhanced POI recommendation (wang2025beyond) Beyond Visit Trajectories: Enhancing POI Recommendation via LLM-Augmented Text and Image Representations. RecSys, 2025. [paper] [code]

4.2 Text and Trajectory

  • TrajSceneLLM (ji2025trajscenellm) TrajSceneLLM: A Multimodal Perspective on Semantic GPS Trajectory Analysis. arXiv preprint arXiv:2506.16401, 2025. [paper] [code]
  • Path-LLM (wei2025path) Path-LLM: A Multi-Modal Path Representation Learning by Aligning and Fusing with Large Language Models. WWW, 2025. [paper] [code]
  • Trajectory-LLM (yang2025trajectory) Trajectory-LLM: A Language-Based Data Generator for Trajectory Prediction in Autonomous Driving. ICLR, 2025. [paper] [code]
  • TrajAgent (du2024trajagent) TrajAgent: An LLM-based Agent Framework for Automated Trajectory Modeling via Collaboration of Large and Small Models. arXiv preprint arXiv:2410.20445, 2024. [paper] [code]
  • CoAST (zhai2025cognitive) Cognitive-Aligned Spatio-Temporal Large Language Models For Next Point-of-Interest Prediction. arXiv preprint arXiv:2510.14702, 2025. [paper]
  • CityGPT (feng2025citygpt) CityGPT: Empowering Urban Spatial Cognition of Large Language Models. KDD, 2025. [paper] [code]
  • POI-Enhancer (cheng2025poi) POI-Enhancer: An LLM-based Semantic Enhancement Framework for POI Representation Learning. AAAI, 2025. [paper] [code]
  • D2A (wang2024simulating) Simulating Human-like Daily Activities with Desire-driven Autonomy. arXiv preprint arXiv:2412.06435, 2024. [paper] [code]

4.3 Vision and Traffic

  • Vision-LLM (yang2025vision) Vision-LLMs for Spatiotemporal Traffic Forecasting. arXiv preprint arXiv:2510.11282, 2025. [paper]
  • OpenDiff (chai2024diffusion) Diffusion Model-based Mobile Traffic Generation with Open Data for Network Planning and Optimization. KDD, 2024. [paper] [code]
  • LSDM (zhang2025lsdm) LSDM: LLM-Enhanced Spatio-temporal Diffusion Model for Service-Level Mobile Traffic Prediction. arXiv preprint arXiv:2507.17795, 2025. [paper] [code]

4.4 Text and Traffic

  • ChatTraffic (zhang2024chattraffic) ChatTraffic: Text-to-Traffic Generation via Diffusion Model. T-ITS, 2024. [paper] [code]
  • ChatSUMO (li2024chatsumo) ChatSUMO: Large Language Model for Automating Traffic Scenario Generation in Simulation of Urban Mobility. IEEE Transactions on Intelligent Vehicles, 2024. [paper]
  • UrbanMind (liu2025urbanmind) UrbanMind: Urban Dynamics Prediction with Multifaceted Spatial-Temporal Large Language Models. KDD, 2025. [paper] [code]
  • T3 (han2024event) Event Traffic Forecasting with Sparse Multimodal Data. ACM MM, 2024. [paper] [code]
  • GPT4MTS (jia2024gpt4mts) GPT4MTS: Prompt-based Large Language Model for Multimodal Time-Series Forecasting. AAAI, 2024. [paper]

4.5 Vision and Graph

  • Sat2Flow (wang2025sat2flow) Sat2Flow: A Structure-Aware Diffusion Framework for Human Flow Generation from Satellite Imagery. arXiv preprint arXiv:2508.19499, 2025. [paper] [code]
  • GlODGen (rong2025satellites) Satellites Reveal Mobility: A Commuting Origin-Destination Flow Generator for Global Cities. arXiv preprint arXiv:2505.15870, 2025. [paper] [code]

4.6 Text and Graph

  • SeMob (chen2025semob) SeMob: Semantic Synthesis for Dynamic Urban Mobility Prediction. EMNLP, 2025. [paper] [code]
  • Ernie-GeoL (huang2022ernie) ERNIE-GeoL: A Geography-and-Language Pre-trained Model and Its Applications in Baidu Maps. KDD, 2022. [paper]
  • FUSE-Traffic (yu2025fuse) FUSE-Traffic: Fusion of Unstructured and Structured Data for Event-aware Traffic Forecasting. ACM SIGSPATIAL, 2025. [paper] [code]
  • CityFM (balsebre2024city) City Foundation Models for Learning General Purpose Representations from OpenStreetMap. CIKM, 2024. [paper] [code]

Dataset

Category Dataset Description Geography Statistics Year
Discrete Sequence Veraset-Visits Individual-level POI check-ins USA 4+ million points of interest 2019-Present
Discrete Sequence Taxi Trips [Link1][Link2] Taxi trip records Chicago 224.8 millions trips 2013-Present
Discrete Sequence NYC TLC Taxi trip records NYC Billions of trips 2009-2025
Discrete Sequence Tencent Mobility[Link1][Link2] POI check-ins Beijing 297,363,263 trajectory points 2019
Discrete Sequence ChinaMobile[Link1][Link2] Cellular trajectories Beijing 4,163,651 points from 1,246 users 2017
Discrete Sequence GMove Tweet check-in trajectories New York, Los Angeles 72 thousand trajectories 2014
Discrete Sequence Foursquare-Global [Link1][Link2] Individual-level POI check-ins Global 33,278,683 check-ins 2012-2013
Discrete Sequence Brightkite Individual-level POI check-ins Global 4,491,143 check-ins 2008-2010
Discrete Sequence Gowalla Individual-level POI check-ins Global 6,442,890 checkins 2009-2010
Discrete Sequence Yelp-check-ins POI-level check-ins 11 metropolitan areas 150,346 businesses -
Continuous Sequence MTA Subway Ridership [Link1][Link2] Subway ridership NYC 178.6 millions Records 2017-present
Continuous Sequence Advan Weekly Patterns POI-level aggregated temporal visit metrics USA, Canada updated weekly 2018-Present
Continuous Sequence Advan Monthly Patterns POI-level aggregated temporal visit metrics USA updated monthly 2019-Present
Continuous Sequence DiDi Chuxing Ride-hailing trajectories Xi'an, Chengdu 8 billion trajectories 2016
Continuous Sequence TaxiPorto [Link1][Link2][Link3] GPS taxi trajectories Porto 442 taxis 2013-2014
Continuous Sequence GeoLife Human GPS trajectories Cities in China, USA, and Europe 17,621 trajectories 2007-2012
Continuous Sequence T-Drive [Link1][Link2] Taxi GPS trajectories Beijing 169,984 trajectories, 10,357 taxis 2008
Continuous Sequence YJMob100K Human trajectories Japan 111,535,175 or 29,389,749 records -
Spatio-Temporal Graph PEMS [Link1] [Link2] Mobility network California 2 GB per day, 39,000+ detectors 1998-Present
Spatio-Temporal Graph NYC Yellow Taxi [Link1][Link2] Hourly trip count tensors NYC 36.4 million trip volumes 2011-2024
Spatio-Temporal Graph CHI-Taxi [Link1][Link2] Taxi OD flow network Chicago 77 nodes 2023
Spatio-Temporal Graph UK mobility flow Commuting OD flow network UK - 1981,1991,2001,2011,2021
Spatio-Temporal Graph Italy mobility flow Commuting OD flow network Italy - 1991,2001,2011,2021
Spatio-Temporal Graph LargeST Vehicle traffic flows California 525,888 time frames 2017-2021
Spatio-Temporal Graph COVID-19 Human Mobility OD flow network USA 3 geographic scales 2019-2021
Spatio-Temporal Graph LODES-7.5 Commuting OD flow network USA 12 OD files for a state-year 2002-2019
Spatio-Temporal Graph TaxiBJ Taxi flow network Beijing 22,459 time intervals 2013-2016
Spatio-Temporal Graph BikeNYC [Link1][Link2] Bike flow network NYC Millions Monthly 2014
Spatio-Temporal Graph BJER4 [Link1][Link2] Road network traffic speed dataset Beijing 12 roads 2014
Multimodal Mobility GlODGen Vision + OD flows Global synthetic data 2025
Multimodal Mobility Earth AI Vision + population + environment Global 10-meter resolution 2025
Multimodal Mobility BostonWalks Population + trips + activities Boston metropolitan area 155,000 trips, 990 participants 2023
Multimodal Mobility TartanAviation Images + trajectories + speech Greater Pittsburgh area 3.1M images, 661 days of trajectories 2020-2023
Multimodal Mobility NetMob25 Population + trip descriptions + trajectories Greater Paris area 500 million high frequency points 2022-2023
Multimodal Mobility nuScenes Vision + trajectories Boston, Singapore 1000 scenes, 1.4 million images 2019
Multimodal Mobility Breadcrumbs Population + trajectories + POI labeling Lausanne 46,380,042 records, 81 users 2018
Multimodal Mobility RECORD MultiSensor Study Population + trajectories + semantic trip annotations Paris region 21,163 segments of observation 2013-2015
Multimodal Mobility METR-LA [Link1][Link2] Traffic speed/flows + vehicle traces + event records Los Angeles 9,300 sensors covering 5,400 miles -
Multimodal Mobility LaDe Delivery & pickup records + road network Five cities in China 10,677K packages, 21K couriers -
Multimodal Mobility Yelp Dataset Check-ins + text reviews 11 metropolitan areas 6,990,280 reviews -
Multimodal Mobility Waymo Open Motion Dataset Vision + trajectories Six U.S. cities 570+ hours at 10 Hz -

BibTex

@article{Guo_2025,
  title={Language Models Meet Urban Mobility: A Data-Centric Review},
  url={[http://dx.doi.org/10.36227/techrxiv.176703984.41856875/v1](http://dx.doi.org/10.36227/techrxiv.176703984.41856875/v1)},
  DOI={10.36227/techrxiv.176703984.41856875/v1},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Guo, Baoshen and Hong, Zhiqing and Cao, Lidan and Li, Donghang and Li, Junyi and Rong, Can and Prakash, Alok and Wang, Shenhao and Zhao, Jinhua},
  year={2025},
  month=dec 
}

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •