latest Latest
sha256:5a7919db798b1fb3a55a1ac86476bdb5414a0757a04dfe212f3935f3d2032586
Install from the command line
Learn more about packages
$ docker pull ghcr.io/maresb/pymc:latest
Use as base image in Dockerfile:
FROM ghcr.io/maresb/pymc:latest
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
Manifest
{
"digest": "sha256:5a7919db798b1fb3a55a1ac86476bdb5414a0757a04dfe212f3935f3d2032586",
"mediaType": "application/vnd.docker.distribution.manifest.v2+json",
"size": 6995,
"config": {
"digest": "sha256:66ca2c503f62b92ced743ffa574a374cb2f945aa9e24d662bb5d79306b01be0b",
"mediaType": "application/vnd.docker.container.image.v1+json",
"size": 17295
},
"layers": [
{
"digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1",
"mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
"size": 32
},
{
"digest": "sha256:2b55860d4c667a7200a0cb279aec26777df61e5d3530388f223ce7859d566e7a",
"mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
"size": 30426706
},
{
"digest": "sha256:33efaa251776bc3500de5217ca50a62a244f76a0fc2981e35e0443996fd7c30d",
"mediaType": "application/octet-stream",
"size": 290
},
{
"digest": "sha256:7e0a89325839c083ecd57259c88e2357dbfbc6e34548b703d81cdb6f224737d0",
"mediaType": "application/octet-stream",
"size": 6768093
},
{
"digest": "sha256:bd9907ebc2f2022cf8397ad912348e0dd2bbb049017b204a973ce1e1f312d099",
"mediaType": "application/octet-stream",
"size": 4750
},
{
"digest": "sha256:9930caa7629eff149a46e6815bdf68b5ee8be3d86043765e1d1c506f350961d0",
"mediaType": "application/octet-stream",
"size": 693
},
{
"digest": "sha256:b26cc4123b26676b002444787c672ebf3a0730c32ca0c20d26946fe5154f4ac4",
"mediaType": "application/octet-stream",
"size": 649
},
{
"digest": "sha256:18c47e27c79ae2f7eed8c8f3f5ba8a06bc1d2d519690bae2e7ad1446ea4c58aa",
"mediaType": "application/octet-stream",
"size": 355
},
{
"digest": "sha256:d63993049fbfbbb634bcc99f7a507c3d44ff8e0c0e72e95278a8f06e891619c0",
"mediaType": "application/octet-stream",
"size": 928828
},
{
"digest": "sha256:9e981e21e92065fa53f238626feccbffafe31ffe70e842bae406169b1e85ea12",
"mediaType": "application/octet-stream",
"size": 441
},
{
"digest": "sha256:35d249679eec05563646d70536c8c04b8b4c276737ec8a7a53f77c3c9cd56e47",
"mediaType": "application/octet-stream",
"size": 112604
},
{
"digest": "sha256:35dbc48bd6d9434d62a7e7f03bad35486e290d51578dec2dc65e1dedf5b0df1f",
"mediaType": "application/octet-stream",
"size": 493
},
{
"digest": "sha256:3e64b7da39f1e582434eb24d62dd5fe10b8e473bafb9e25b4198d0a8cf22d4eb",
"mediaType": "application/octet-stream",
"size": 13980872
},
{
"digest": "sha256:0e180a34a713b4983990022918bd1e33c7c3431296189b60cae3f894841a5aaa",
"mediaType": "application/octet-stream",
"size": 15204079
},
{
"digest": "sha256:f3e8991bb7414ae219cb1fd189d76182e06d157d749ffe5e429f48ddaaea75fc",
"mediaType": "application/octet-stream",
"size": 628
},
{
"digest": "sha256:544988a41a71dde0f2a7a361a181fe7e6acd04a54ecabc1b235cab5a648eb83b",
"mediaType": "application/octet-stream",
"size": 2151877
},
{
"digest": "sha256:4eb4fb3af7361b0167c00a18b715e931f7ece3c50268186f4be36e98287dd93d",
"mediaType": "application/octet-stream",
"size": 82406750
},
{
"digest": "sha256:e4e2af59c79139020b3edb05d875a26af5b73da5b3d81d3539bf8a9d7aceae3d",
"mediaType": "application/octet-stream",
"size": 746
},
{
"digest": "sha256:dd50c834ba4a6692bcebd75ee872f13ec1c0c73bd97399b3980f80a7f97b2d79",
"mediaType": "application/octet-stream",
"size": 43424
},
{
"digest": "sha256:8b0509f435c8f4f4c3a4ef4fb2f9a18de4aedcb836d3f2a3364a52145010259b",
"mediaType": "application/octet-stream",
"size": 267
},
{
"digest": "sha256:7d742ce113be8c7d978a560d6deda8fabdcdd229a05134cf274b4d4a61748d35",
"mediaType": "application/octet-stream",
"size": 666
},
{
"digest": "sha256:383f282e866335f85b062dac5309d4a4af4818fbd758f54c77b5a8c5c659f85c",
"mediaType": "application/octet-stream",
"size": 125
},
{
"digest": "sha256:29a028986d71586c3cf4aee03e3f817b372dc0595e9492825f1912776133b10d",
"mediaType": "application/octet-stream",
"size": 503
},
{
"digest": "sha256:8fa343567ca71bb4fc70ed12e50b823a8f1c52a0272cfee4a9695039e61501c3",
"mediaType": "application/octet-stream",
"size": 526
},
{
"digest": "sha256:cf0401cae317c9bb595784b3515b7e54922afe33addaa936bfeca40215278231",
"mediaType": "application/octet-stream",
"size": 679
},
{
"digest": "sha256:c019fa642cf74f9d53c3aa3f22d410e44f829090c108e985333aec265899c2f6",
"mediaType": "application/octet-stream",
"size": 103
},
{
"digest": "sha256:55d6ae51f1302cb46d4be666795daba4673caa1f79e6f973277548147992171e",
"mediaType": "application/octet-stream",
"size": 14327778
},
{
"digest": "sha256:4d6beb38fb69b319d38530f02ad3420eca6e0adad08e56bac41b49891da8c414",
"mediaType": "application/octet-stream",
"size": 583
},
{
"digest": "sha256:5090926c4101cc0afb540118d23aa63befc576afcd87e721c3086c0520fa53d3",
"mediaType": "application/octet-stream",
"size": 1398
},
{
"digest": "sha256:6dcedea8113c2cbd5177519a9ec1ae0e1cc655870000f5f92f7e3a8d0d9e5c35",
"mediaType": "application/octet-stream",
"size": 939382402
},
{
"digest": "sha256:66ca2c503f62b92ced743ffa574a374cb2f945aa9e24d662bb5d79306b01be0b",
"mediaType": "application/octet-stream",
"size": 17295
},
{
"digest": "sha256:904ce016fb2ffe824849b1ca6333923622baf617ed78d5602be5e59c03fc903d",
"mediaType": "application/octet-stream",
"size": 381366549
}
],
"labels": {
"org.opencontainers.image.url": "https://github.com/maresb/pymc",
"org.opencontainers.image.licenses": "NOASSERTION",
"org.opencontainers.image.title": "pymc",
"org.opencontainers.image.revision": "ebd893b3b5fac182ea929dde9acbb7baad076d89",
"org.opencontainers.image.created": "2022-09-18T11:27:40.872Z",
"org.opencontainers.image.version": "latest",
"org.opencontainers.image.description": "Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara",
"org.opencontainers.image.source": "https://github.com/maresb/pymc"
}
}
Details
- pymc
-
maresb
- maresb/pymc
- almost 3 years ago
- NOASSERTION
Download activity
- Total downloads 299
- Last 30 days 0
- Last week 0
- Today 0