You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<li>Series of functions, power series, and power series of elementary functions, uniform convergence, Weierstrass <math><mi>M</mi></math> test. Formula for the radius of convergence of a power series.</li>
84
+
<li>Series of functions, power series, and power series of elementary functions, uniform convergence, Weierstrass <mathrole="math"><mi>M</mi></math> test. Formula for the radius of convergence of a power series.</li>
85
85
<li>Analytic and harmonic functions, Cauchy-Riemann equations.</li>
86
86
<li>Power series and Laurent series.</li>
87
87
<li>Elementary conformal mappings, fractional linear mappings. The Cayley transform.</li>
<li><math><mi>σ</mi></math>-algebras of sets.</li>
99
+
<li><mathrole="math"><mi>σ</mi></math>-algebras of sets.</li>
100
100
<li>Lebesgue measures and abstract measures, signed measures. Lebesgue-Stieltjes measures on the real line and their correspondence with increasing, right continuous functions.</li>
101
101
<li>Measurable functions. Approximation by simple functions. Riemann and Lebesgue integrals.</li>
102
102
<li>Monotone convergence and dominated convergence theorems, Fatou's lemma.</li>
103
103
<li>Product spaces and product measure, Fubini-Tonelli theorems.</li>
104
104
<li>Absolute continuity of measures, Radon-Nikodym theorem. Lebesgue-Radon-Nikodym decomposition.</li>
105
105
<li>Hardy-Littlewood maximal function: the maximal inequality for the Hardy-Littlewood maximal function and the Vitali covering lemma. The Lebesgue differentiation theorem.</li>
106
-
<li>Absolute continuity of functions, differentiation and the Fundamental Theorem of Calculus for absolutely continuous functions. The correspondence between absolutely continuous functions on <math><mi>ℝ</mi></math> and measures on <math><mi>ℝ</mi></math> which are absolutely continuous with respect to the Lebesgue measure. Bounded variation functions and their correspondence with complex measures on <math><mi>ℝ</mi></math>.</li>
106
+
<li>Absolute continuity of functions, differentiation and the Fundamental Theorem of Calculus for absolutely continuous functions. The correspondence between absolutely continuous functions on <mathrole="math"><mimathvariant="double-struck">R</mi></math> and measures on <mathrole="math"><mimathvariant="double-struck">R</mi></math> which are absolutely continuous with respect to the Lebesgue measure. Bounded variation functions and their correspondence with complex measures on <mathrole="math"><mimathvariant="double-struck">R</mi></math>.</li>
<li><math><msup><mi>L</mi><mi>p</mi></msup></math> spaces, completeness. Approximation of <math><msup><mi>L</mi><mi>p</mi></msup></math>-functions on <math><msup><mi>ℝ</mi><mi>d</mi></msup></math> by compactly supported continuous functions.</li>
<li><math><msup><mi>L</mi><mi>p</mi></msup></math>-<math><msup><mi>L</mi><msup><mi>p</mi><mo>′</mo></msup></msup></math> duality when <math><mrow><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi>p</mi><mo>′</mo></msup></mfrac><mo>=</mo><mn>1</mn></mrow></math>.</li>
108
+
<li><mathrole="math"><msup><mi>L</mi><mi>p</mi></msup></math> spaces, completeness. Approximation of <mathrole="math"><msup><mi>L</mi><mi>p</mi></msup></math>-functions on <mathrole="math"><msup><mimathvariant="double-struck">R</mi><mi>d</mi></msup></math> by compactly supported continuous functions.</li>
<li><mathrole="math"><msup><mi>L</mi><mi>p</mi></msup></math>-<mathrole="math"><msup><mi>L</mi><msup><mi>p</mi><mo>′</mo></msup></msup></math> duality when <mathrole="math"><mrow><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi>p</mi><mo>′</mo></msup></mfrac><mo>=</mo><mn>1</mn></mrow></math>.</li>
<li>Fourier transforms in <math><msup><mi>ℝ</mi><mi>d</mi></msup></math>, Plancherel and Parseval's theorems, Fourier transforms of derivatives and translations. Riemann-Lebesgue lemma. Hausdorff-Young's inequality.</li>
113
-
<li>Convolutions: Fourier transforms of convolutions, approximations to the identity, approximation of functions on <math><msup><mi>ℝ</mi><mi>d</mi></msup></math> by compactly supported smooth functions. Young's inequality for convolution.</li>
112
+
<li>Fourier transforms in <mathrole="math"><msup><mimathvariant="double-struck">R</mi><mi>d</mi></msup></math>, Plancherel and Parseval's theorems, Fourier transforms of derivatives and translations. Riemann-Lebesgue lemma. Hausdorff-Young's inequality.</li>
113
+
<li>Convolutions: Fourier transforms of convolutions, approximations to the identity, approximation of functions on <mathrole="math"><msup><mimathvariant="double-struck">R</mi><mi>d</mi></msup></math> by compactly supported smooth functions. Young's inequality for convolution.</li>
<li>Multivariable calculus basics: definition of a smooth map <math><mrow><mi>f</mi><mo>:</mo><msup><mi>ℝ</mi><mi>n</mi></msup><mo>→</mo><msup><mi>ℝ</mi><mi>m</mi></msup></mrow></math>, the inverse and implicit function theorems.</li>
81
-
<li>Manifolds and smooth maps; submanifolds. Examples: 2-dimensional surfaces; the sphere <math><msup><mi>S</mi><mi>n</mi></msup></math>; the real projective space <math><msup><mi>ℝP</mi><mi>n</mi></msup></math>; examples of Lie groups: classical matrix groups.</li>
80
+
<li>Multivariable calculus basics: definition of a smooth map <mathrole="math"><mrow><mi>f</mi><mo>:</mo><msup><mimathvariant="double-struck">R</mi><mi>n</mi></msup><mo>→</mo><msup><mimathvariant="double-struck">R</mi><mi>m</mi></msup></mrow></math>, the inverse and implicit function theorems.</li>
81
+
<li>Manifolds and smooth maps; submanifolds. Examples: 2-dimensional surfaces; the sphere <mathrole="math"><msup><mi>S</mi><mi>n</mi></msup></math>; the real projective space <mathrole="math"><msup><mrow><mimathvariant="double-struck">R</mi><mi>P</mi></mrow><mi>n</mi></mrow></msup></math>; examples of Lie groups: classical matrix groups.</li>
82
82
<li>The differential of a smooth map, tangent vectors, and tangent spaces. The tangent bundle.</li>
83
83
<li>Regular and critical values. Embeddings, immersions. Transversality.</li>
84
84
<li>Sard's theorem.</li>
85
85
<li>The embedding theorem: every closed manifold embeds in a Euclidean space.</li>
86
86
<li>Orientability.</li>
87
87
<li>Vector fields, the Euler characteristic.</li>
88
88
<li>Invariants of manifolds and smooth maps: mod 2 degree of a map, the integer-valued degree of a map between oriented manifolds, intersection numbers, linking numbers.</li>
89
-
<li>Applications to compact manifolds: <math><mrow><mo>∂</mo><mi>M</mi></mrow></math> is not a retract of <math><mi>M</mi></math>, Brouwer Fixed Point Theorem, zeros of vector fields, etc.</li>
89
+
<li>Applications to compact manifolds: <mathrole="math"><mrow><mo>∂</mo><mi>M</mi></mrow></math> is not a retract of <mathrole="math"><mi>M</mi></math>, Brouwer Fixed Point Theorem, zeros of vector fields, etc.</li>
90
90
<li>Vector bundles: tangent bundle, normal bundle, duals, tensor bundles. Structures on bundles including inner products, specifically Riemannian metrics.</li>
<li>Basic properties of singular homology: functoriality, homotopy invariance, long exact sequence of a pair, excision, and the Meyer–Vietoris sequence.</li>
100
100
<li>Homological algebra: chain complexes, maps, homotopies. The long exact homology sequence associated to a s.e.s. of chain complexes. The snake lemma. The 5–lemma.</li>
101
101
<li>The homology groups of spheres, and the degree of a map between spheres. Classic applications, such as Brouwer fixed point theorem, but proved with homology.</li>
102
-
<li>The Jordan–Alexander Complement Theorem: <math><mrow><msub><mi>H</mi><mo>*</mo></msub><mo>(</mo><msup><mi>ℝ</mi><mi>n</mi></msup><mo>−</mo><mi>A</mi><mo>)</mo><mo>≅</mo><msub><mi>H</mi><mo>*</mo></msub><mo>(</mo><msup><mi>ℝ</mi><mi>n</mi></msup><mo>−</mo><mi>B</mi><mo>)</mo></mrow></math> if <math><mi>A</mi></math> and <math><mi>B</mi></math> are homeomorphic closed subsets of <math><msup><mi>ℝ</mi><mi>n</mi></msup></math>. The Jordan Curve Theorem is a special case.</li>
102
+
<li>The Jordan–Alexander Complement Theorem: <mathrole="math"><mrow><msub><mi>H</mi><mo>*</mo></msub><mo>(</mo><msup><mimathvariant="double-struck">R</mi><mi>n</mi></msup><mo>−</mo><mi>A</mi><mo>)</mo><mo>≅</mo><msub><mi>H</mi><mo>*</mo></msub><mo>(</mo><msup><mimathvariant="double-struck">R</mi><mi>n</mi></msup><mo>−</mo><mi>B</mi><mo>)</mo></mrow></math> if <mathrole="math"><mi>A</mi></math> and <mathrole="math"><mi>B</mi></math> are homeomorphic closed subsets of <mathrole="math"><msup><mimathvariant="double-struck">R</mi><mi>n</mi></msup></math>. The Jordan Curve Theorem is a special case.</li>
103
103
<li>The homology of a C.W. complex: cellular chains. This includes delta complex homology as a special case. Examples: real and complex projective spaces, closed surfaces.</li>
104
104
<li>Euler characteristic and its properties. Classic calculations: spheres, closed surfaces.</li>
105
105
<li>Construction of the fundamental group as a homotopy functor of a space with basepoint.</li>
106
106
<li>Covering spaces: definition and examples.</li>
107
-
<li>The lifting theorem: under appropriate point set conditions, a continuous <math><mrow><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow></math> lifts through a covering map <math><mrow><mover><mi>Y</mi><mo>~</mo></mover><mo>→</mo><mi>Y</mi></mrow></math> iff it does on the level of <math><msub><mi>π</mi><mn>1</mn></msub></math>.</li>
108
-
<li>Deck transformations, and the correspondence between subgroups of the fundamental groups and covering spaces. A variant: if <math><mover><mi>Y</mi><mo>~</mo></mover></math> is simply connected, there is a 1–1 correspondence between covering spaces <math><mrow><mover><mi>Y</mi><mo>~</mo></mover><mo>→</mo><mi>Y</mi></mrow></math> and free, proper group actions on <math><mover><mi>Y</mi><mo>~</mo></mover></math>.</li>
107
+
<li>The lifting theorem: under appropriate point set conditions, a continuous <mathrole="math"><mrow><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow></math> lifts through a covering map <mathrole="math"><mrow><mover><mi>Y</mi><mo>~</mo></mover><mo>→</mo><mi>Y</mi></mrow></math> iff it does on the level of <mathrole="math"><msub><mi>π</mi><mn>1</mn></msub></math>.</li>
108
+
<li>Deck transformations, and the correspondence between subgroups of the fundamental groups and covering spaces. A variant: if <mathrole="math"><mover><mi>Y</mi><mo>~</mo></mover></math> is simply connected, there is a 1–1 correspondence between covering spaces <mathrole="math"><mrow><mover><mi>Y</mi><mo>~</mo></mover><mo>→</mo><mi>Y</mi></mrow></math> and free, proper group actions on <mathrole="math"><mover><mi>Y</mi><mo>~</mo></mover></math>.</li>
109
109
<li>Seifert–Van Kampen Theorem.</li>
110
-
<li><math><msub><mi>H</mi><mn>1</mn></msub></math> is the abelianization of <math><msub><mi>π</mi><mn>1</mn></msub></math>.</li>
110
+
<li><mathrole="math"><msub><mi>H</mi><mn>1</mn></msub></math> is the abelianization of <mathrole="math"><msub><mi>π</mi><mn>1</mn></msub></math>.</li>
111
111
<li>Examples, including the fundamental group of spheres, projective space, surfaces, etc. Classic applications, e.g., to group theory.</li>
0 commit comments