@@ -279,8 +279,7 @@ def support_point(rv, size, mu, cov):
279279
280280 def logp (value , mu , cov ):
281281 """
282- Calculate log-probability of Multivariate Normal distribution
283- at specified value.
282+ Calculate logp of Multivariate Normal distribution at specified value.
284283
285284 Parameters
286285 ----------
@@ -469,8 +468,7 @@ def support_point(rv, size, nu, mu, scale):
469468
470469 def logp (value , nu , mu , scale ):
471470 """
472- Calculate log-probability of Multivariate Student's T distribution
473- at specified value.
471+ Calculate logp of Multivariate Student's T distribution at specified value.
474472
475473 Parameters
476474 ----------
@@ -535,8 +533,7 @@ def support_point(rv, size, a):
535533
536534 def logp (value , a ):
537535 """
538- Calculate log-probability of Dirichlet distribution
539- at specified value.
536+ Calculate logp of Dirichlet distribution at specified value.
540537
541538 Parameters
542539 ----------
@@ -642,8 +639,7 @@ def support_point(rv, size, n, p):
642639
643640 def logp (value , n , p ):
644641 """
645- Calculate log-probability of Multinomial distribution
646- at specified value.
642+ Calculate logp of Multinomial distribution at specified value.
647643
648644 Parameters
649645 ----------
@@ -736,8 +732,7 @@ def support_point(rv, size, n, a):
736732
737733 def logp (value , n , a ):
738734 """
739- Calculate log-probability of DirichletMultinomial distribution
740- at specified value.
735+ Calculate logp of DirichletMultinomial distribution at specified value.
741736
742737 Parameters
743738 ----------
@@ -773,6 +768,7 @@ def logp(value, n, a):
773768class _OrderedMultinomial (Multinomial ):
774769 r"""
775770 Underlying class for ordered multinomial distributions.
771+
776772 See docs for the OrderedMultinomial wrapper class for more details on how to use it in models.
777773 """
778774
@@ -1013,8 +1009,7 @@ def dist(cls, nu, V, *args, **kwargs):
10131009
10141010 def logp (X , nu , V ):
10151011 """
1016- Calculate log-probability of Wishart distribution
1017- at specified value.
1012+ Calculate logp of Wishart distribution at specified value.
10181013
10191014 Parameters
10201015 ----------
@@ -1047,9 +1042,10 @@ def logp(X, nu, V):
10471042
10481043def WishartBartlett (name , S , nu , is_cholesky = False , return_cholesky = False , initval = None ):
10491044 r"""
1050- Bartlett decomposition of the Wishart distribution. As the Wishart
1051- distribution requires the matrix to be symmetric positive semi-definite
1052- it is impossible for MCMC to ever propose acceptable matrices.
1045+ Bartlett decomposition of the Wishart distribution.
1046+
1047+ As the Wishart distribution requires the matrix to be symmetric positive
1048+ semi-definite, it is impossible for MCMC to ever propose acceptable matrices.
10531049
10541050 Instead, we can use the Barlett decomposition which samples a lower
10551051 diagonal matrix. Specifically:
@@ -1248,6 +1244,7 @@ def update(self, node):
12481244
12491245class _LKJCholeskyCov (Distribution ):
12501246 r"""Underlying class for covariance matrix with LKJ distributed correlations.
1247+
12511248 See docs for LKJCholeskyCov function for more details on how to use it in models.
12521249 """
12531250
@@ -1599,8 +1596,7 @@ def support_point(rv, *args):
15991596
16001597 def logp (value , n , eta ):
16011598 """
1602- Calculate log-probability of LKJ distribution at specified
1603- value.
1599+ Calculate logp of LKJ distribution at specified value.
16041600
16051601 Parameters
16061602 ----------
@@ -1900,8 +1896,7 @@ def support_point(rv, size, mu, rowchol, colchol):
19001896
19011897 def logp (value , mu , rowchol , colchol ):
19021898 """
1903- Calculate log-probability of Matrix-valued Normal distribution
1904- at specified value.
1899+ Calculate logp of Matrix-valued Normal distribution at specified value.
19051900
19061901 Parameters
19071902 ----------
@@ -2083,8 +2078,7 @@ def support_point(rv, rng, size, mu, sigma, *covs):
20832078
20842079 def logp (value , rng , size , mu , sigma , * covs ):
20852080 """
2086- Calculate log-probability of Multivariate Normal distribution
2087- with Kronecker-structured covariance at specified value.
2081+ Calculate logp of Multivariate Normal distribution with Kronecker-structured covariance at specified value.
20882082
20892083 Parameters
20902084 ----------
@@ -2209,8 +2203,10 @@ def rng_fn(cls, rng: np.random.RandomState, mu, W, alpha, tau, W_is_valid, size)
22092203
22102204class CAR (Continuous ):
22112205 r"""
2212- Likelihood for a conditional autoregression. This is a special case of the
2213- multivariate normal with an adjacency-structured covariance matrix.
2206+ Likelihood for a conditional autoregression.
2207+
2208+ This is a special case of the multivariate normal with an
2209+ adjacency-structured covariance matrix.
22142210
22152211 .. math::
22162212
@@ -2271,8 +2267,9 @@ def support_point(rv, size, mu, W, alpha, tau, W_is_valid):
22712267
22722268 def logp (value , mu , W , alpha , tau , W_is_valid ):
22732269 """
2274- Calculate log-probability of a CAR-distributed vector
2275- at specified value. This log probability function differs from
2270+ Calculate logp of a CAR-distributed vector at specified value.
2271+
2272+ This log probability function differs from
22762273 the true CAR log density (AKA a multivariate normal with CAR-structured
22772274 covariance matrix) by an additive constant.
22782275
@@ -2356,9 +2353,10 @@ def rng_fn(cls, rng, size, W, sigma, zero_sum_stdev):
23562353
23572354class ICAR (Continuous ):
23582355 r"""
2359- The intrinsic conditional autoregressive prior. It is primarily used to model
2360- covariance between neighboring areas. It is a special case
2361- of the :class:`~pymc.CAR` distribution where alpha is set to 1.
2356+ The intrinsic conditional autoregressive prior.
2357+
2358+ It is primarily used to model covariance between neighboring areas. It is a
2359+ special case of the :class:`~pymc.CAR` distribution where alpha is set to 1.
23622360
23632361 The log probability density function is
23642362
@@ -2541,7 +2539,9 @@ def rng_fn(cls, rng, alpha, K, size):
25412539
25422540class StickBreakingWeights (SimplexContinuous ):
25432541 r"""
2544- Likelihood of truncated stick-breaking weights. The weights are generated from a
2542+ Likelihood of truncated stick-breaking weights.
2543+
2544+ The weights are generated from a
25452545 stick-breaking proceduce where :math:`x_k = v_k \prod_{\ell < k} (1 - v_\ell)` for
25462546 :math:`k \in \{1, \ldots, K\}` and :math:`x_K = \prod_{\ell = 1}^{K} (1 - v_\ell) = 1 - \sum_{\ell=1}^K x_\ell`
25472547 with :math:`v_k \stackrel{\text{i.i.d.}}{\sim} \text{Beta}(1, \alpha)`.
@@ -2605,8 +2605,7 @@ def support_point(rv, size, alpha, K):
26052605
26062606 def logp (value , alpha , K ):
26072607 """
2608- Calculate log-probability of the distribution induced from the stick-breaking process
2609- at specified value.
2608+ Calculate logp of the distribution induced from the stick-breaking process at specified value.
26102609
26112610 Parameters
26122611 ----------
@@ -2688,8 +2687,8 @@ def rv_op(cls, sigma, support_shape, *, size=None, rng=None):
26882687
26892688class ZeroSumNormal (Distribution ):
26902689 r"""
2691- ZeroSumNormal distribution, i.e Normal distribution where one or
2692- several axes are constrained to sum to zero.
2690+ Normal distribution where one or several axes are constrained to sum to zero.
2691+
26932692 By default, the last axis is constrained to sum to zero.
26942693 See `n_zerosum_axes` kwarg for more details.
26952694
0 commit comments