A compact, explainable career recommendation engine that maps student profiles (skills, education, interests) to ranked career suggestions. Focused on reproducible ML pipelines and an interactive frontend for exploration.
- Explainable Random Forest with feature importance and visualizer.
- End-to-end pipeline: raw data → preprocessing → features → training → inference.
- Quiz micro-app for candidate profiling and personalized recommendations.
- Web frontend (Vite/React) for interactive exploration.






Tip: click any thumbnail to open the full-size image. Images are shown from ./screenshots/
.
.vscode/ - editor settings
backend/ - Python backend, datasets and model artifacts
├── datasets/ - many CSVs (College.csv, Engineering.csv, ... )
├── app.py - backend app / demo scripts
├── merge_colleges.py
├── check_model_shapes.py
├── app.db - small demo DB (if present)
├── career_1200_model.pkl
├── quiz_label_encoder.pkl
├── quiz_vectorizer.pkl
└── requirements.txt
frontend/ - Vite/React app (UI)
├── public/
├── src/
├── package.json
└── README.md
quiz/ - quiz micro-app & quiz-specific models
├── models/ - emb_model, tfidf_vectorizer.joblib, voting_clf.joblib, label_encoder.joblib
├── app.py
└── career_quiz_dataset_1200.csv
screenshots/ - images used in README (Dashboard.png, Quiz.png, Visualizer.png, ...)
notebooks/ - EDA, experiments and visualizations
README.md - this file
requirements.txt - root or backend Python deps
LICENSE - MIT
(Structure reflects current workspace — files like career_model.pkl, scaler.pkl, colleges.csv are in root/backend as shown.)
- Clone: git clone https://github.com/vansh070605/Career-Path-Explorer.git
- Create & activate venv (PowerShell):
python -m venv .venv .\.venv\Scripts\Activate.ps1
- Install:
pip install -r backend/requirements.txt
- Run backend demo:
python backend/app.py
- Run frontend (from frontend/):
cd frontend npm install npm run dev
- Contributions welcome — open issues or PRs.
- Follow code style and add tests for new features.
Licensed under MIT — see LICENSE.