Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
"import numpy as np\n",
"from skimage.feature import peak_local_max\n",
"import tensorflow as tf\n",
"import tempfile\n",
"\n",
"from deepcell.applications import NuclearSegmentation\n",
"from deepcell.image_generators import CroppingDataGenerator\n",
Expand All @@ -54,7 +55,7 @@
"metadata": {},
"outputs": [],
"source": [
"data_dir = '/notebooks/data'\n",
"data_dir = '/data'\n",
"model_path = 'NuclearSegmentation'\n",
"metrics_path = 'metrics.yaml'\n",
"train_log = 'train_log.csv'"
Expand Down Expand Up @@ -146,6 +147,7 @@
"outputs": [],
"source": [
"# Post processing parameters\n",
"radius = 10\n",
"maxima_threshold = 0.1\n",
"interior_threshold = 0.01\n",
"exclude_border = False\n",
Expand Down Expand Up @@ -187,6 +189,7 @@
"X_train = histogram_normalization(X_train)\n",
"X_val = histogram_normalization(X_val)\n",
"\n",
"\n",
"# use augmentation for training but not validation\n",
"datagen = CroppingDataGenerator(\n",
" rotation_range=180,\n",
Expand Down Expand Up @@ -452,15 +455,72 @@
"## Predict on test data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare data by using validation data generator"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test = histograph_normalization(X_test)\n",
"X_test = histogram_normalization(X_test)\n",
"\n",
"test_images = prediction_model.predict(X_test)"
"# Generator used to crop data and transform y\n",
"test_data = datagen_val.flow(\n",
" {'X': X_test, 'y': y_test},\n",
" seed=seed,\n",
" min_objects=min_objects,\n",
" transforms=transforms,\n",
" transforms_kwargs=transforms_kwargs,\n",
" batch_size=batch_size,\n",
")\n",
"\n",
"# Generator used to crop y without transform\n",
"test_data_y = datagen_val.flow(\n",
" {'X': y_test, 'y': y_test},\n",
" seed=seed,\n",
" min_objects=min_objects,\n",
" transforms=[],\n",
" transforms_kwargs={},\n",
" batch_size=batch_size,\n",
")\n",
"\n",
"X_crop, y_crop, y_crop_t = None, None, None\n",
"for i, j in test_data:\n",
" \n",
" X_crop = np.concatenate((X_crop, i), axis=0) if X_crop is not None else i\n",
" # select needed transform as y_crop_t\n",
" y_crop_t = np.concatenate((y_crop_t, j[2]), axis=0) if y_crop_t is not None else j[2]\n",
"\n",
" if len(X_crop)>=len(X_test):\n",
" print(X_crop.shape)\n",
" \n",
" break\n",
"\n",
"for i, _ in test_data_y:\n",
" if y_crop is None:\n",
" y_crop = i\n",
"\n",
" elif len(y_crop)>=len(y_test):\n",
" print(y_crop.shape)\n",
" break\n",
" \n",
" else:\n",
" y_crop = np.concatenate((y_crop, i), axis=0)\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Predict and visualize"
]
},
{
Expand All @@ -471,7 +531,8 @@
},
"outputs": [],
"source": [
"index = np.random.choice(X_test.shape[0])\n",
"test_images = prediction_model.predict(X_crop)\n",
"index = np.random.choice(X_crop.shape[0])\n",
"print(index)\n",
"\n",
"fig, axes = plt.subplots(1, 4, figsize=(20, 20))\n",
Expand All @@ -496,7 +557,7 @@
")\n",
"\n",
"# raw image with centroid\n",
"axes[0].imshow(X_test[index, ..., 0])\n",
"axes[0].imshow(X_crop[index, ..., 0])\n",
"axes[0].scatter(coords[..., 1], coords[..., 0],\n",
" color='r', marker='.', s=10)\n",
"\n",
Expand Down Expand Up @@ -524,7 +585,7 @@
},
"outputs": [],
"source": [
"outputs = model.predict(X_test)\n",
"outputs = model.predict(X_crop)\n",
"\n",
"y_pred = []\n",
"\n",
Expand All @@ -542,12 +603,36 @@
" y_pred.append(mask[0])\n",
"\n",
"y_pred = np.stack(y_pred, axis=0)\n",
"y_pred = np.expand_dims(y_pred, axis=-1)\n",
"y_true = y_test.copy()\n",
"y_true = y_crop_t[:, :, :, 0].copy().astype(int)\n",
"y_true = np.expand_dims(y_true, axis=-1)\n",
"\n",
"m = Metrics('DeepWatershed', seg=False)\n",
"m.calc_object_stats(y_true, y_pred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Visual check"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for _ in range(5):\n",
" index = np.random.choice(X_crop.shape[0])\n",
" print(index)\n",
" fig, axes = plt.subplots(1, 3, figsize=(20, 20))\n",
" \n",
" axes[0].imshow(X_crop[index, ..., 0], cmap='jet')\n",
" axes[1].imshow(y_true[index, ..., 0], cmap='jet')\n",
" axes[2].imshow(y_pred[index, ..., 0], cmap='jet')\n",
" plt.show()"
]
}
],
"metadata": {
Expand Down