@@ -2099,17 +2099,17 @@ def frobenius_relative(self, n=1):
2099
2099
sage: phi = DrinfeldModule(A, [1, z, z])
2100
2100
sage: phi.frobenius_relative()
2101
2101
Drinfeld Module morphism:
2102
- From: Drinfeld module defined by T |--> z*t ^2 + z*t + 1
2103
- To: Drinfeld module defined by T |--> (2*z^2 + 4*z + 4)*t ^2 + (2*z^2 + 4*z + 4)*t + 1
2104
- Defn: t
2102
+ From: Drinfeld module defined by T |--> z*τ ^2 + z*τ + 1
2103
+ To: Drinfeld module defined by T |--> (2*z^2 + 4*z + 4)*τ ^2 + (2*z^2 + 4*z + 4)*τ + 1
2104
+ Defn: τ
2105
2105
sage: phi.frobenius_relative(2)
2106
2106
Drinfeld Module morphism:
2107
- From: Drinfeld module defined by T |--> z*t ^2 + z*t + 1
2108
- To: Drinfeld module defined by T |--> (3*z^2 + 1)*t ^2 + (3*z^2 + 1)*t + 1
2109
- Defn: t ^2
2107
+ From: Drinfeld module defined by T |--> z*τ ^2 + z*τ + 1
2108
+ To: Drinfeld module defined by T |--> (3*z^2 + 1)*τ ^2 + (3*z^2 + 1)*τ + 1
2109
+ Defn: τ ^2
2110
2110
2111
- When ` n` is the degree of `F` over `\FF_q(\gamma(T))`, we obtain
2112
- the Frobenius endomorphism::
2111
+ If `F` is finite and ` n` is the degree of `F` over `\FF_q(\gamma(T))`,
2112
+ we obtain the Frobenius endomorphism::
2113
2113
2114
2114
sage: phi.frobenius_relative(3) == phi.frobenius_endomorphism()
2115
2115
True
@@ -2119,11 +2119,11 @@ def frobenius_relative(self, n=1):
2119
2119
2120
2120
sage: psi = DrinfeldModule(A, [z, z, 1])
2121
2121
sage: psi.frobenius_relative()
2122
- Endomorphism of Drinfeld module defined by T |--> t ^2 + z*t + z
2123
- Defn: t ^3
2122
+ Endomorphism of Drinfeld module defined by T |--> τ ^2 + z*τ + z
2123
+ Defn: τ ^3
2124
2124
sage: psi.frobenius_endomorphism()
2125
- Endomorphism of Drinfeld module defined by T |--> t ^2 + z*t + z
2126
- Defn: t ^3
2125
+ Endomorphism of Drinfeld module defined by T |--> τ ^2 + z*τ + z
2126
+ Defn: τ ^3
2127
2127
2128
2128
When the characteristic is zero, the relative Frobenius is not defined
2129
2129
and an error is raised::
0 commit comments