@@ -561,9 +561,9 @@ def BarbellGraph(n1, n2):
561
561
562
562
sage: n1, n2 = randint(3, 10), randint(0, 10)
563
563
sage: g = graphs.BarbellGraph(n1, n2)
564
- sage: g.num_verts () == 2 * n1 + n2
564
+ sage: g.n_vertices () == 2 * n1 + n2
565
565
True
566
- sage: g.num_edges () == 2 * binomial(n1, 2) + n2 + 1 # needs sage.symbolic
566
+ sage: g.n_edges () == 2 * binomial(n1, 2) + n2 + 1 # needs sage.symbolic
567
567
True
568
568
sage: g.is_connected()
569
569
True
@@ -638,9 +638,9 @@ def LollipopGraph(n1, n2):
638
638
639
639
sage: n1, n2 = randint(3, 10), randint(0, 10)
640
640
sage: g = graphs.LollipopGraph(n1, n2)
641
- sage: g.num_verts () == n1 + n2
641
+ sage: g.n_vertices () == n1 + n2
642
642
True
643
- sage: g.num_edges () == binomial(n1, 2) + n2 # needs sage.symbolic
643
+ sage: g.n_edges () == binomial(n1, 2) + n2 # needs sage.symbolic
644
644
True
645
645
sage: g.is_connected()
646
646
True
@@ -711,9 +711,9 @@ def TadpoleGraph(n1, n2):
711
711
712
712
sage: n1, n2 = randint(3, 10), randint(0, 10)
713
713
sage: g = graphs.TadpoleGraph(n1, n2)
714
- sage: g.num_verts () == n1 + n2
714
+ sage: g.n_vertices () == n1 + n2
715
715
True
716
- sage: g.num_edges () == n1 + n2
716
+ sage: g.n_edges () == n1 + n2
717
717
True
718
718
sage: g.girth() == n1
719
719
True
@@ -761,10 +761,10 @@ def AztecDiamondGraph(n):
761
761
sage: graphs.AztecDiamondGraph(2)
762
762
Aztec Diamond graph of order 2
763
763
764
- sage: [graphs.AztecDiamondGraph(i).num_verts () for i in range(8)]
764
+ sage: [graphs.AztecDiamondGraph(i).n_vertices () for i in range(8)]
765
765
[0, 4, 12, 24, 40, 60, 84, 112]
766
766
767
- sage: [graphs.AztecDiamondGraph(i).num_edges () for i in range(8)]
767
+ sage: [graphs.AztecDiamondGraph(i).n_edges () for i in range(8)]
768
768
[0, 4, 16, 36, 64, 100, 144, 196]
769
769
770
770
sage: G = graphs.AztecDiamondGraph(3)
@@ -803,9 +803,9 @@ def DipoleGraph(n):
803
803
804
804
sage: n = randint(0, 10)
805
805
sage: g = graphs.DipoleGraph(n)
806
- sage: g.num_verts () == 2
806
+ sage: g.n_vertices () == 2
807
807
True
808
- sage: g.num_edges () == n
808
+ sage: g.n_edges () == n
809
809
True
810
810
sage: g.is_connected() == (n > 0)
811
811
True
@@ -2660,7 +2660,7 @@ def HanoiTowerGraph(pegs, disks, labels=True, positions=True):
2660
2660
A slightly larger instance. ::
2661
2661
2662
2662
sage: H = graphs.HanoiTowerGraph(4, 6, labels=False, positions=False)
2663
- sage: H.num_verts ()
2663
+ sage: H.n_vertices ()
2664
2664
4096
2665
2665
sage: H.distance(0, 4^6-1)
2666
2666
17
0 commit comments