You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-2Lines changed: 1 addition & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -28,12 +28,11 @@ Big updates have landed in LLM Compressor! To get a more in-depth look, check ou
28
28
29
29
Some of the exciting new features include:
30
30
31
+
***Quantization with Multiple Modifiers**: Multiple quantization modifiers can now be applied to the same model for mixed-precision quantization, for example applying AWQ W4A16 to a model's `self_attn` layers and GPTQ W8A8 to its `mlp` layers. This is an advanced usage of `llm-compressor` and an active area of research. See the [non-uniform quantization support](examples/quantization_non_uniform) section for more detail and [example usage](examples/quantization_non_uniform/quantization_multiple_modifiers.py).
31
32
***QuIP and SpinQuant-style Transforms**: The newly added [`QuIPModifier`](examples/transform/quip_example.py) and [`SpinQuantModifier`](examples/transform/spinquant_example.py) allow users to quantize their models after injecting hadamard weights into the computation graph, reducing quantization error and greatly improving accuracy recovery for low bit weight and activation quantization.
32
33
***DeepSeekV3-style Block Quantization Support**: This allows for more efficient compression of large language models without needing a calibration dataset. Quantize a Qwen3 model to [W8A8](examples/quantization_w8a8_fp8/fp8_block_example.py).
33
34
***Llama4 Quantization Support**: Quantize a Llama4 model to [W4A16](examples/multimodal_vision/llama4_example.py) or [NVFP4](examples/quantization_w4a4_fp4/llama4_example.py). The checkpoint produced can seamlessly run in vLLM.
34
35
***FP4 Quantization - now with MoE and non-uniform support:** Quantize weights and activations to FP4 and seamlessly run the compressed model in vLLM. Model weights and activations are quantized following the NVFP4 [configuration](https://github.com/neuralmagic/compressed-tensors/blob/f5dbfc336b9c9c361b9fe7ae085d5cb0673e56eb/src/compressed_tensors/quantization/quant_scheme.py#L104). See examples of [fp4 activation support](examples/quantization_w4a4_fp4/llama3_example.py), [MoE support](examples/quantization_w4a4_fp4/qwen_30b_a3b.py), and [Non-uniform quantization support](examples/quantization_non_uniform) where some layers are selectively quantized to fp8 for better recovery. You can also mix other quantization schemes, such as int8 and int4.
35
-
***Large Model Support with Sequential Onloading**: As of llm-compressor>=0.6.0, you can now quantize very large language models on a single GPU. Models are broken into disjoint layers which are then onloaded to the GPU one layer at a time. For more information on sequential onloading, see [Big Modeling with Sequential Onloading](examples/big_models_with_sequential_onloading/README.md) as well as the [DeepSeek-R1 Example](examples/quantizing_moe/deepseek_r1_example.py).
36
-
***Axolotl Sparse Finetuning Integration:** Seamlessly finetune sparse LLMs with our Axolotl integration. Learn how to create [fast sparse open-source models with Axolotl and LLM Compressor](https://developers.redhat.com/articles/2025/06/17/axolotl-meets-llm-compressor-fast-sparse-open). See also the [Axolotl integration docs](https://docs.axolotl.ai/docs/custom_integrations.html#llmcompressor).
Copy file name to clipboardExpand all lines: examples/quantization_non_uniform/README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -15,6 +15,6 @@ It may also be interesting to quantize a model with two different [quantization
15
15
This section outlines how multiple quantization modifiers can be applied to the same model for mixed-precision quantization, for example applying AWQ W4A16 to a model's `self_attn` layers and GPTQ W8A8 to its `mlp` layers. This heterogeneous application of multiple modifiers comes in 2 flavors:
16
16
17
17
1. Run every modifier in a single, sequential pipeline, performing a single calibrated run. See `./quantization_multiple_modifiers.py` for an example.
18
-
2. Run each modifier in its own, independent pipeline, performing a calibrated run for each modifier. To run each modifier independently, run `./quantization_multiple_modifiers.py`with `oneshot(..., pipeline="independent")` instead of `pipeline="sequential"`.
18
+
2. Run each modifier in its own, independent pipeline, performing a calibrated run for each modifier. To run each modifier independently, run the example with the `--independent` flag set (`python ./quantization_multiple_modifiers.py --independent`).
19
19
20
20
This is an advanced usage of `llm-compressor` and an active area of research. Best practices will be provided in a future release, after further research and sensitivity analysis.
0 commit comments