Skip to content

[Quantization] Support mixed-precision compression #1713

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 9 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 71 additions & 69 deletions src/llmcompressor/transformers/compression/quantization_format.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,70 @@
from typing import Optional
from typing import List, Optional

from compressed_tensors import CompressionFormat
from compressed_tensors.config import SparsityStructure
from compressed_tensors.quantization import QuantizationStrategy, QuantizationType
from compressed_tensors.quantization import (
QuantizationArgs,
QuantizationStrategy,
QuantizationType,
)
from compressed_tensors.quantization.utils import is_module_quantized

__all__ = ["infer_quantization_format"]
__all__ = ["infer_per_module_quantization_format"]


def infer_quantization_format(
def _get_quant_method(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This function is called _get_quant_method, but returns a format

input_args: QuantizationArgs,
weight_args: QuantizationArgs,
sparsity_structure: Optional[str] = None,
):
is_24_structure = (
SparsityStructure(sparsity_structure) == SparsityStructure.TWO_FOUR
)
is_weight_only = weight_args is not None and input_args is None

if weight_args.num_bits == 4 and weight_args.type == QuantizationType.FLOAT.value:
return CompressionFormat.nvfp4_pack_quantized

if is_weight_only: # w4a16 and w8a16
is_valid_pack = (
weight_args.num_bits in [4, 8]
and weight_args.type == QuantizationType.INT.value
)
if not is_valid_pack: # packing only valid for int4 and int 8
return CompressionFormat.naive_quantized
if is_24_structure:
if (
weight_args.strategy is not QuantizationStrategy.CHANNEL.value
and weight_args.strategy is not QuantizationStrategy.GROUP.value
):
# marlin24 kernel only applicable for channel/group quantization
return CompressionFormat.pack_quantized
return CompressionFormat.marlin_24
return CompressionFormat.pack_quantized

else: # w8a8 float and int
if (
weight_args.type == QuantizationType.FLOAT.value
and weight_args.num_bits == 8
):
return CompressionFormat.float_quantized
if weight_args.type == QuantizationType.INT.value:
return CompressionFormat.int_quantized

return CompressionFormat.naive_quantized


def infer_per_module_quantization_format(
model,
quantization_format: Optional[str] = None,
save_compressed: bool = False,
sparsity_structure: Optional[str] = None,
) -> str:
) -> Optional[List[str]]:
"""
Infers the quantization format for a model based on its state and provided
compression arguments.
compression arguments. Also updates thhe quantization_scheme.format value
based on the inferred format. Returns the unique list of formats in the model
or None if empty list
The following table outlines the possible quantization and sparsity formats
along with their corresponding compressor formats:
Expand All @@ -27,6 +75,8 @@ def infer_quantization_format(
+---------------+----------+----------------------+---------------------+
| W8A8 - int | None | int_quantized | Dense |
| W8A8 - float | None | float_quantized | Dense |
| W4A16 - float | None | nvfp4_pack_quantized | Dense |
| W4A4 - float | None | nvfp4_pack_quantized | Dense |
| W4A16 - int | None | pack_quantized | Dense |
| W8A16 - int | None | pack_quantized | Dense |
| W8A16 - float | None | naive_quantized | Dense |
Expand All @@ -44,74 +94,26 @@ def infer_quantization_format(
:param save_compressed: used to infer a quantization format if None is provided
:return compression format appropriate for model
"""
if quantization_format is not None:
return quantization_format

weight_args, input_args = _get_unique_quant_args(model)
if len(weight_args) <= 0:
return None

if save_compressed:
is_24_structure = (
SparsityStructure(sparsity_structure) == SparsityStructure.TWO_FOUR
)
is_weight_only = len(input_args) == 0 and len(weight_args) > 0

if (
weight_args[0].num_bits == 4
and weight_args[0].type == QuantizationType.FLOAT.value
):
return CompressionFormat.nvfp4_pack_quantized

if is_weight_only: # w4a16 and w8a16
is_valid_pack = all(
weight_arg.num_bits in [4, 8]
and weight_arg.type == QuantizationType.INT.value
for weight_arg in weight_args
)
if not is_valid_pack: # packing only valid for int4 and int 8
return CompressionFormat.naive_quantized
if is_24_structure:
for arg in weight_args:
if (
arg.strategy is not QuantizationStrategy.CHANNEL.value
and arg.strategy is not QuantizationStrategy.GROUP.value
):
# marlin24 kernel only applicable for channel/group quantization
return CompressionFormat.pack_quantized
return CompressionFormat.marlin_24
return CompressionFormat.pack_quantized
else: # w8a8 float and int
if len(weight_args) == 1:
if (
weight_args[0].type == QuantizationType.FLOAT.value
and weight_args[0].num_bits == 8
):
return CompressionFormat.float_quantized
if weight_args[0].type == QuantizationType.INT.value:
return CompressionFormat.int_quantized

return CompressionFormat.naive_quantized
else:
# format will be inferred from config
if not save_compressed:
return None

if quantization_format:
return [quantization_format]

def _get_unique_quant_args(model):
"""
Gets a list of all the unique quantization settings present in model
"""
quant_info_weight = []
quant_info_inputs = []
unique_formats = []
for submodule in model.modules():
if is_module_quantized(submodule):
weight_scheme = submodule.quantization_scheme.weights
input_scheme = submodule.quantization_scheme.input_activations
if weight_scheme is not None:
if weight_scheme not in quant_info_weight:
quant_info_weight.append(weight_scheme)
if input_scheme is not None:
if input_scheme not in quant_info_inputs:
quant_info_inputs.append(input_scheme)

return quant_info_weight, quant_info_inputs
if weight_scheme is None:
continue # no weight quant - nothing to compress
compression_format = _get_quant_method(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why are we not inferring from scheme.format? Doesn't this override anything the user might have passed?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Rather than waiting until the end to do inference, why not infer a format at the source?

class QuantizationScheme:
    format: Optional[CompressionFormat] = None

    @validate_field("format")
    def validate_format(self, value):
        if self.weights and self.input_activations ...
        
        inferred_format = ...
        if value is not None and value != inferred_format:
            logger.warn_once("Consider using inferred scheme")
            
        return value or inferred_format

Copy link
Collaborator Author

@dsikka dsikka Aug 12, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LLM Compressor interprets the compression format at the time of the compression. This is our current lifecycle atm. We can still override using a global format.

We can override in a follow-up but the goal of this PR isn't to support per-module format overriding. The goal is to support the most common pathway to start, which is where we determine the format during compresssion time.

input_scheme, weight_scheme, sparsity_structure
)
submodule.quantization_scheme.format = compression_format.value
if compression_format not in unique_formats:
unique_formats.append(compression_format)
if len(unique_formats) > 0:
return unique_formats
return None
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
from llmcompressor.core import active_session
from llmcompressor.pytorch.model_load.helpers import copy_python_files_from_model_cache
from llmcompressor.transformers.compression.quantization_format import (
infer_quantization_format,
infer_per_module_quantization_format,
)
from llmcompressor.transformers.compression.sparsity_metadata_config import (
SparsityConfigMetadata,
Expand Down Expand Up @@ -228,13 +228,15 @@ def get_model_compressor(
SparsityConfigMetadata.infer_sparsity_structure(model)
)

quantization_format: Optional[CompressionFormat] = infer_quantization_format(
model=model,
quantization_format=quantization_format,
save_compressed=save_compressed,
sparsity_structure=None
if sparsity_config is None
else sparsity_config.sparsity_structure,
quantization_format: Optional[CompressionFormat] = (
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Type hint does not match return type of function

infer_per_module_quantization_format(
model=model,
quantization_format=quantization_format,
save_compressed=save_compressed,
sparsity_structure=None
if sparsity_config is None
else sparsity_config.sparsity_structure,
)
)

return ModelCompressor.from_pretrained_model(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
from compressed_tensors.quantization import preset_name_to_scheme

from llmcompressor.transformers.compression.quantization_format import (
infer_quantization_format,
infer_per_module_quantization_format,
)
from tests.llmcompressor.pytorch.helpers import LinearNet

Expand All @@ -25,7 +25,7 @@ def test_infer_quant_format(preset, sparsity_structure, expected_format):
for _, module in dummy_model.named_modules():
module.quantization_scheme = quant_scheme

inferred_format = infer_quantization_format(
inferred_format = infer_per_module_quantization_format(
dummy_model, save_compressed=True, sparsity_structure=sparsity_structure
)
assert inferred_format.value == expected_format
assert inferred_format[0].value == expected_format