Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 28 additions & 5 deletions src/llmcompressor/modifiers/awq/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from typing import Dict, List, Optional, Tuple, Union

import torch
from compressed_tensors.quantization import disable_quantization
from compressed_tensors.quantization import QuantizationType, disable_quantization
from compressed_tensors.utils import (
align_modules,
get_execution_device,
Expand Down Expand Up @@ -126,6 +126,7 @@ class AWQModifier(Modifier, QuantizationMixin):

# Private vars set during validation
_num_bits: Optional[int] = PrivateAttr(default=None)
_activation_bits: int = PrivateAttr(default=16)
_symmetric: Optional[bool] = PrivateAttr(default=None)
_group_size: Optional[int] = PrivateAttr(default=None)

Expand Down Expand Up @@ -189,6 +190,18 @@ def validate_model_after(model: "AWQModifier") -> "AWQModifier":
if act is not None
}
if not (len(num_bits_set) == 0 or num_bits_set == {16}):
num_bits_type = {
act.type
for group in config.config_groups.values()
for act in (group.input_activations, group.output_activations)
if act is not None
}
assert (
next(iter(num_bits_type)) == QuantizationType.FLOAT
), "In AWQ, lower-precision activation quantization must be float"

model._activation_bits = next(iter(num_bits_set))

warnings.warn(
"A strategy including activation quantization was detected. "
"AWQ was originally intended for weight-only quantization. "
Expand Down Expand Up @@ -612,16 +625,26 @@ def _compute_best_scale(
# Q(W * s)
for linear in linears2scale:
linear.weight.mul_(_scalesview)
update_offload_parameter(
linear,
"weight",
scaled_weight = (
_pseudo_quantize_tensor(
w=linear.weight.data,
symmetric=self._symmetric,
bit_width=self._num_bits,
group_size=self._group_size,
)[0]
/ _scalesview,
/ _scalesview
)

# fp8 activation simulation
if self._activation_bits == 8:
scaled_weight = scaled_weight.to(torch.float8_e4m3fn).to(
torch.float16
)

update_offload_parameter(
linear,
"weight",
scaled_weight,
)

# W * X
Expand Down
35 changes: 34 additions & 1 deletion tests/llmcompressor/modifiers/awq/test_base.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,10 @@
import pytest
import torch
from compressed_tensors.quantization import QuantizationArgs, QuantizationScheme
from compressed_tensors.quantization import (
QuantizationArgs,
QuantizationScheme,
QuantizationType,
)
from pydantic import ValidationError

from llmcompressor.modifiers.awq import AWQMapping, AWQModifier
Expand Down Expand Up @@ -154,6 +158,25 @@ def test_validate():
}
)

with pytest.raises(ValidationError):
AWQModifier(
config_groups={
"group_0": QuantizationScheme(
targets=["Linear"],
weights=QuantizationArgs(
num_bits=4,
group_size=128,
),
input_activations=QuantizationArgs(
num_bits=8, type=QuantizationType.INT
),
output_activations=QuantizationArgs(
num_bits=8, type=QuantizationType.INT
),
),
}
)

# valid configuration
AWQModifier(
config_groups={
Expand All @@ -165,6 +188,16 @@ def test_validate():
targets=["Linear"],
weights=QuantizationArgs(num_bits=4, group_size=128, symmetric=False),
),
"group_2": QuantizationScheme(
targets=["Linear"],
weights=QuantizationArgs(num_bits=4, group_size=128, symmetric=False),
input_activations=QuantizationArgs(
num_bits=8, type=QuantizationType.FLOAT
),
output_activations=QuantizationArgs(
num_bits=8, type=QuantizationType.FLOAT
),
),
}
)

Expand Down