Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions examples/offline_inference_npu_long_seq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import os
import time
import argparse

from vllm import LLM, SamplingParams

os.environ["VLLM_USE_MODELSCOPE"] = "True"
os.environ["VLLM_ASCEND_ENABLE_CP"] = "1"
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"

if __name__ == "__main__":
parser = argparse.ArgumentParser()

parser.add_argument('--input_len', type=int, default=1024)
parser.add_argument('--output_len', type=int, default=128)
parser.add_argument('--bs', type=int, default=1)
parser.add_argument('--model_path', type=str, default="deepseek-ai/DeepSeek-V2-Lite")
parser.add_argument('--tp', type=int, default=2)
parser.add_argument('--cp', type=int, default=2)
parser.add_argument('--dcp', type=int, default=1)
parser.add_argument('--iter_times', type=int, default=1)

args = parser.parse_args()

prompts = [
"The capital of France is",
"Hello, my name is Tom, I am",
"The president of United States is",
"AI future is"
]

sampling_params = SamplingParams(temperature = 0.8, top_p = 0.95, max_tokens=args.output_len)
llm = LLM(
model=args.model_path,
trust_remote_code=True,
enforce_eager=True,
tensor_parallel_size=args.tp,
context_parallel_size=args.cp,
decode_context_parallel_size=args.dcp,
enable_prefix_caching=False,
enable_expert_parallel=True,
enable_chunked_prefill=False,
max_num_batched_tokens=2048,
max_model_len=1024,
additional_config={"ascend_scheduler_config": {"enabled": False}},
max_num_seqs=1,
block_size=128,
gpu_memory_utilization=0.9
)

t0 = time.time()
for _ in range(args.iter_times):
outputs = llm.generate(prompts, sampling_params)
t1 = time.time()
print(f"TTFT: {(t1 - t0) * 1000 / (args.iter_times * args.bs)} ms")

for i, output in enumerate(outputs):
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"req_num: {i}\nGenerated text: {generated_text!r}")
Loading
Loading