Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 49 additions & 0 deletions tests/distributed/eplb_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import os
import random

import torch
import torch.multiprocessing as mp

from vllm.distributed.parallel_state import (
init_distributed_environment,
)
from vllm.utils.system_utils import update_environment_variables

mp.set_start_method("spawn", force=True)


def distributed_run(fn, world_size, *args):
number_of_processes = world_size
processes: list[mp.Process] = []
for i in range(number_of_processes):
env: dict[str, str] = {}
env["RANK"] = str(i)
env["LOCAL_RANK"] = str(i)
env["WORLD_SIZE"] = str(number_of_processes)
env["LOCAL_WORLD_SIZE"] = str(number_of_processes)
env["MASTER_ADDR"] = "localhost"
env["MASTER_PORT"] = "12345"
p = mp.Process(target=fn, args=(env, world_size, *args))
processes.append(p)
p.start()

for p in processes:
p.join()

for p in processes:
assert p.exitcode == 0


def set_env_vars_and_device(env: dict[str, str]) -> None:
update_environment_variables(env)
local_rank = os.environ["LOCAL_RANK"]
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
init_distributed_environment()

# Ensure each worker process has the same random seed
random.seed(42)
torch.manual_seed(42)
42 changes: 2 additions & 40 deletions tests/distributed/test_eplb_execute.py
Original file line number Diff line number Diff line change
@@ -1,57 +1,19 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import os
import random

import pytest
import torch
import torch.distributed
import torch.multiprocessing as mp

from vllm.distributed.eplb.rebalance_execute import rearrange_expert_weights_inplace
from vllm.distributed.parallel_state import (
ensure_model_parallel_initialized,
get_tp_group,
init_distributed_environment,
)
from vllm.utils.system_utils import update_environment_variables

mp.set_start_method("spawn", force=True)


def distributed_run(fn, world_size, *args):
number_of_processes = world_size
processes: list[mp.Process] = []
for i in range(number_of_processes):
env: dict[str, str] = {}
env["RANK"] = str(i)
env["LOCAL_RANK"] = str(i)
env["WORLD_SIZE"] = str(number_of_processes)
env["LOCAL_WORLD_SIZE"] = str(number_of_processes)
env["MASTER_ADDR"] = "localhost"
env["MASTER_PORT"] = "12345"
p = mp.Process(target=fn, args=(env, world_size, *args))
processes.append(p)
p.start()

for p in processes:
p.join()

for p in processes:
assert p.exitcode == 0


def set_env_vars_and_device(env: dict[str, str]) -> None:
update_environment_variables(env)
local_rank = os.environ["LOCAL_RANK"]
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
init_distributed_environment()

# Ensure each worker process has the same random seed
random.seed(42)
torch.manual_seed(42)

from .eplb_utils import distributed_run, set_env_vars_and_device


def create_expert_indices_with_redundancy(
Expand Down
285 changes: 285 additions & 0 deletions tests/distributed/test_eplb_fused_moe_layer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

# Test that the interaction between EPLB and FusedMoE Layer is okay

from dataclasses import dataclass

import pytest
import torch

from vllm.config import VllmConfig, set_current_vllm_config
from vllm.distributed.eplb.rebalance_execute import rearrange_expert_weights_inplace
from vllm.distributed.parallel_state import (
ensure_model_parallel_initialized,
get_tp_group,
)
from vllm.model_executor.layers.fused_moe.layer import FusedMoE

from .eplb_utils import distributed_run, set_env_vars_and_device


@dataclass
class TestConfig:
num_layers: int
num_experts: int
num_local_experts: int
num_topk: int
hidden_size: int
intermediate_size: int
weight_dtype: torch.dtype
weight_scale_dtype: torch.dtype | None
column_major_scales: bool


def make_expert_weights(
layer_idx: int,
global_expert_idx: int,
global_num_experts: int,
tensor_shape: tuple[int, ...],
tensor_dtype: torch.dtype,
tensor_device: torch.device,
is_column_major: bool,
) -> torch.Tensor:
assert len(tensor_shape) == 2

if is_column_major:
tensor_shape = (tensor_shape[1], tensor_shape[0])

x = torch.empty(tensor_shape, dtype=tensor_dtype, device=tensor_device)
value_offset = (layer_idx * global_num_experts + global_expert_idx) * x.numel()
x.view(-1).copy_(
torch.arange(
value_offset,
value_offset + x.numel(),
dtype=tensor_dtype,
device=tensor_device,
)
)

if is_column_major:
x = torch.transpose(x, 1, 0)
assert not x.is_contiguous()
return x


def make_fused_moe_layer(
rank: int,
layer_idx: int,
test_config: TestConfig,
) -> FusedMoE:
fml = FusedMoE(
num_experts=test_config.num_experts,
top_k=test_config.num_topk,
hidden_size=test_config.hidden_size,
intermediate_size=test_config.intermediate_size,
prefix=f"dummy_layer_{layer_idx}",
activation="silu",
is_act_and_mul=True,
params_dtype=test_config.weight_dtype,
)

device = torch.device(f"cuda:{rank}")

from functools import partial

_make_expert_weights = partial(
make_expert_weights,
layer_idx=layer_idx,
global_num_experts=test_config.num_experts,
tensor_device=device,
)

assert isinstance(fml.w13_weight.data, torch.Tensor)
assert isinstance(fml.w2_weight.data, torch.Tensor)
fml.w13_weight.data = fml.w13_weight.data.to(device=device)
fml.w2_weight.data = fml.w2_weight.data.to(device=device)
w13_weight = fml.w13_weight.data
w2_weight = fml.w2_weight.data
assert w13_weight.size(0) == test_config.num_local_experts
for i in range(test_config.num_local_experts):
g_i = rank * test_config.num_local_experts + i
w13_weight_e = w13_weight[i]
w2_weight_e = w2_weight[i]
w13_weight_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w13_weight_e.shape,
tensor_dtype=w13_weight_e.dtype,
is_column_major=False,
)
)
w2_weight_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w2_weight_e.shape,
tensor_dtype=w2_weight_e.dtype,
is_column_major=False,
)
)

block_size = 16

def block_quant_scales_shape(
shape: tuple[int, ...], is_column_major: bool
) -> tuple[int, ...]:
assert len(shape) == 3
if not is_column_major:
return (shape[0], shape[1] // block_size, shape[2] // block_size)
else:
return (shape[0], shape[2] // block_size, shape[1] // block_size)

is_column_major = test_config.column_major_scales
w13_weight_scale_inv = torch.empty(
block_quant_scales_shape(w13_weight.shape, is_column_major),
dtype=test_config.weight_dtype,
device=device,
)
w2_weight_scale_inv = torch.empty(
block_quant_scales_shape(w2_weight.shape, is_column_major),
dtype=test_config.weight_dtype,
device=device,
)

for i in range(test_config.num_local_experts):
g_i = rank * test_config.num_local_experts + i
w13_s_e = w13_weight_scale_inv[i]
w2_s_e = w2_weight_scale_inv[i]
w13_s_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w13_s_e.shape,
tensor_dtype=w13_s_e.dtype,
# Fill data in row-major and then
# transpose if test_config requires col-major.
is_column_major=False,
)
)
w2_s_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w2_s_e.shape,
tensor_dtype=w2_s_e.dtype,
is_column_major=False,
)
)
if is_column_major:
w13_weight_scale_inv = torch.transpose(w13_weight_scale_inv, 1, 2)
w2_weight_scale_inv = torch.transpose(w2_weight_scale_inv, 1, 2)
assert not w13_weight_scale_inv.is_contiguous()
assert not w2_weight_scale_inv.is_contiguous()

# Add scales to the parameter list
fml.w13_weight_scale_inv = torch.nn.Parameter(
w13_weight_scale_inv, requires_grad=False
)
fml.w2_weight_scale_inv = torch.nn.Parameter(
w2_weight_scale_inv, requires_grad=False
)

return fml


def _test_eplb_fml(env, world_size: int, test_config: TestConfig):
# Initialize model parallel (using tensor parallel as an entrypoint
# to expert parallel)
set_env_vars_and_device(env)

vllm_config = VllmConfig()
vllm_config.parallel_config.tensor_parallel_size = world_size
vllm_config.parallel_config.enable_expert_parallel = True

with set_current_vllm_config(vllm_config):
ensure_model_parallel_initialized(
tensor_model_parallel_size=world_size, pipeline_model_parallel_size=1
)

ep_group = get_tp_group().cpu_group
ep_rank = torch.distributed.get_rank()

fml_layers = [
make_fused_moe_layer(ep_rank, layer_idx, test_config)
for layer_idx in range(test_config.num_layers)
]
rank_expert_weights = [fml.get_expert_weights() for fml in fml_layers]

indices = torch.zeros(
test_config.num_layers, test_config.num_experts, dtype=torch.long
)
for lidx in range(test_config.num_layers):
indices[lidx] = torch.Tensor(range(test_config.num_experts))

shuffled_indices = torch.zeros_like(indices)
for lidx in range(test_config.num_layers):
shuffled_indices[lidx] = torch.randperm(test_config.num_experts)

rearrange_expert_weights_inplace(
indices,
shuffled_indices,
rank_expert_weights,
ep_group,
is_profile=False,
)

num_local_experts = test_config.num_local_experts
num_global_experts = test_config.num_experts
for lidx, fml in enumerate(fml_layers):
for name, w in fml.named_parameters():
for e in range(num_local_experts):
g_e = shuffled_indices[lidx][ep_rank * num_local_experts + e]
ref = make_expert_weights(
layer_idx=lidx,
global_expert_idx=int(g_e.item()),
global_num_experts=num_global_experts,
tensor_shape=w[e].shape,
tensor_dtype=w[e].dtype,
tensor_device=w[e].device,
is_column_major=not w[e].is_contiguous(),
)
assert w[e].shape == ref.shape and w[e].stride() == ref.stride(), (
f"w[{e}] {w[e].size()} {w[e].stride()} vs "
f"ref {ref.size()} {ref.stride()}"
)
torch.testing.assert_close(w[e], ref)


@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("num_layers", [4])
@pytest.mark.parametrize("num_experts", [16])
@pytest.mark.parametrize("hidden_size", [256])
@pytest.mark.parametrize("intermediate_size", [256])
@pytest.mark.parametrize("column_major_scales", [True, False])
def test_eplb_fml(
world_size: int,
num_layers: int,
num_experts: int,
hidden_size: int,
intermediate_size: int,
column_major_scales: bool,
):
if torch.cuda.device_count() < world_size:
pytest.skip(f"Need at least {world_size} GPUs to run the test")

num_local_experts = num_experts // world_size
num_topk = 4
# The dtypes are fine as we are essentially just checking data-copies
weight_dtype = torch.bfloat16
weight_scale_dtype = torch.bfloat16

test_config = TestConfig(
num_layers=num_layers,
num_experts=num_experts,
num_local_experts=num_local_experts,
num_topk=num_topk,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
weight_dtype=weight_dtype,
weight_scale_dtype=weight_scale_dtype,
column_major_scales=column_major_scales,
)

distributed_run(
_test_eplb_fml,
world_size,
test_config,
)
Loading