Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions tfkit/test/utility/test_utility_eval_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,24 @@ def test_tokenize_text(self):
eval = tfkit.utility.eval_metric.EvalMetric(tokenizer, normalize_text=True)
self.assertEqual(eval.tokenize_text("How's this work"), "how ' s this work")

def test_empty_er(self):
class DummyTokenizer:
special_tokens_map = {'sep_token': '[SEP]'}

def encode(self, text, add_special_tokens=False):
return text.split()

def decode(self, tokens, **kwargs):
return ' '.join(tokens)

tokenizer = DummyTokenizer()
eval = tfkit.utility.eval_metric.EvalMetric(tokenizer)
eval.add_record("", "", "", task='default')
results = list(eval.cal_score('er'))
self.assertEqual(len(results), 1)
self.assertEqual(results[0][1]['WER'], 0)
self.assertEqual(results[0][1]['CER'], 0)

@pytest.mark.skip()
def testNLGWithPAD(self):
tokenizer = BertTokenizer.from_pretrained('voidful/albert_chinese_tiny')
Expand Down
4 changes: 2 additions & 2 deletions tfkit/utility/eval_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,8 +195,8 @@ def cal_score(self, metric):
targets.append(target)
data_score.append([predict, target, {'wer': wer, 'cer': cer}])

wer = 100 * _wer(targets, predicts) if len(target) > 0 else 100
cer = 100 * _cer(targets, predicts) if len(target) > 0 else 100
wer = 100 * _wer(targets, predicts) if len(targets) > 0 else 100
cer = 100 * _cer(targets, predicts) if len(targets) > 0 else 100
result = {"WER": wer, "CER": cer}
data_score = sorted(data_score, key=lambda i: i[2]['wer'], reverse=False)
if "nlg" in metric:
Expand Down
Loading