Skip to content

Context Management processor for Pydantic AI agents, providing LLM-powered summarization or zero-cost sliding window trimming to handle infinite/long-running conversations without context overflow. Supports flexible triggers, safe cutoffs, and custom prompts for efficient AI apps.

License

Notifications You must be signed in to change notification settings

vstorm-co/summarization-pydantic-ai

Repository files navigation

Context Management for Pydantic AI

Automatic Conversation Summarization and History Management

PyPI version Python 3.10+ License: MIT CI Pydantic AI

Intelligent Summarization — LLM-powered context compression  •  Sliding Window — zero-cost message trimming  •  Context Manager — real-time token tracking + tool truncation  •  Safe Cutoff — preserves tool call pairs


Context Management for Pydantic AI helps your Pydantic AI agents handle long conversations without exceeding model context limits. Choose between intelligent LLM summarization or fast sliding window trimming.

Full framework? Check out Pydantic Deep Agents — complete agent framework with planning, filesystem, subagents, and skills.

Use Cases

What You Want to Build How This Library Helps
Long-Running Agent Automatically compress history when context fills up
Customer Support Bot Preserve key details while discarding routine exchanges
Code Assistant Keep recent code context, summarize older discussions
High-Throughput App Zero-cost sliding window for maximum speed
Cost-Sensitive App Choose between quality (summarization) or free (sliding window)

Installation

pip install summarization-pydantic-ai

Or with uv:

uv add summarization-pydantic-ai

For accurate token counting:

pip install summarization-pydantic-ai[tiktoken]

For real-time token tracking and tool output truncation:

pip install summarization-pydantic-ai[hybrid]

Quick Start

from pydantic_ai import Agent
from pydantic_ai_summarization import create_summarization_processor

processor = create_summarization_processor(
    trigger=("tokens", 100000),
    keep=("messages", 20),
)

agent = Agent(
    "openai:gpt-4o",
    history_processors=[processor],
)

result = await agent.run("Hello!")

That's it. Your agent now:

  • Monitors conversation size on every turn
  • Summarizes older messages when limits are reached
  • Preserves tool call/response pairs (never breaks them)
  • Keeps recent context intact

Available Processors

Processor LLM Cost Latency Context Preservation
SummarizationProcessor High High Intelligent summary
SlidingWindowProcessor Zero ~0ms Discards old messages
ContextManagerMiddleware Per compression Low tracking / High compression Intelligent summary

Intelligent Summarization

Uses an LLM to create summaries of older messages:

from pydantic_ai_summarization import create_summarization_processor

processor = create_summarization_processor(
    trigger=("tokens", 100000),  # When to summarize
    keep=("messages", 20),       # What to keep
)

Zero-Cost Sliding Window

Simply discards old messages — no LLM calls:

from pydantic_ai_summarization import create_sliding_window_processor

processor = create_sliding_window_processor(
    trigger=("messages", 100),  # When to trim
    keep=("messages", 50),      # What to keep
)

Real-Time Context Manager

Dual-protocol middleware combining token tracking, auto-compression, and tool output truncation:

from pydantic_ai import Agent
from pydantic_ai_summarization import create_context_manager_middleware

middleware = create_context_manager_middleware(
    max_tokens=200_000,
    compress_threshold=0.9,
    on_usage_update=lambda pct, cur, mx: print(f"{pct:.0%} used ({cur:,}/{mx:,})"),
)

agent = Agent(
    "openai:gpt-4o",
    history_processors=[middleware],
)

Requires pip install summarization-pydantic-ai[hybrid]

Trigger Types

Type Example Description
messages ("messages", 50) Trigger when message count exceeds threshold
tokens ("tokens", 100000) Trigger when token count exceeds threshold
fraction ("fraction", 0.8) Trigger at percentage of max_input_tokens

Keep Types

Type Example Description
messages ("messages", 20) Keep last N messages
tokens ("tokens", 10000) Keep last N tokens worth
fraction ("fraction", 0.2) Keep last N% of context

Advanced Configuration

Multiple Triggers

from pydantic_ai_summarization import SummarizationProcessor

processor = SummarizationProcessor(
    model="openai:gpt-4o",
    trigger=[
        ("messages", 50),    # OR 50+ messages
        ("tokens", 100000),  # OR 100k+ tokens
    ],
    keep=("messages", 10),
)

Fraction-Based

processor = SummarizationProcessor(
    model="openai:gpt-4o",
    trigger=("fraction", 0.8),  # 80% of context window
    keep=("fraction", 0.2),     # Keep last 20%
    max_input_tokens=128000,    # GPT-4's context window
)

Custom Token Counter

def my_token_counter(messages):
    return sum(len(str(msg)) for msg in messages) // 4

processor = create_summarization_processor(
    token_counter=my_token_counter,
)

Custom Model (e.g., Azure OpenAI)

from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from pydantic_ai_summarization import create_summarization_processor

azure_model = OpenAIModel(
    "gpt-4o",
    provider=OpenAIProvider(
        base_url="https://my-resource.openai.azure.com/openai/deployments/gpt-4o",
        api_key="your-azure-api-key",
    ),
)

processor = create_summarization_processor(
    model=azure_model,
    trigger=("tokens", 100000),
    keep=("messages", 20),
)

Custom Summary Prompt

processor = create_summarization_processor(
    summary_prompt="""
    Extract key information from this conversation.
    Focus on: decisions made, code written, pending tasks.

    Conversation:
    {messages}
    """,
)

Why Choose This Library?

Feature Description
Two Strategies Intelligent summarization or fast sliding window
Flexible Triggers Message count, token count, or fraction-based
Safe Cutoff Never breaks tool call/response pairs
Custom Counters Bring your own token counting logic
Custom Prompts Control how summaries are generated
Token Tracking Real-time usage monitoring with callbacks
Tool Truncation Automatic truncation of large tool outputs
Custom Models Use any pydantic-ai Model (Azure, custom providers)
Lightweight Only requires pydantic-ai-slim (no extra model SDKs)

Related Projects

Package Description
Pydantic Deep Agents Full agent framework (uses this library)
pydantic-ai-backend File storage and Docker sandbox
pydantic-ai-todo Task planning toolset
subagents-pydantic-ai Multi-agent orchestration
pydantic-ai The foundation — agent framework by Pydantic

Contributing

git clone https://github.com/vstorm-co/summarization-pydantic-ai.git
cd summarization-pydantic-ai
make install
make test  # 100% coverage required

License

MIT — see LICENSE

Built with ❤️ by vstorm-co

About

Context Management processor for Pydantic AI agents, providing LLM-powered summarization or zero-cost sliding window trimming to handle infinite/long-running conversations without context overflow. Supports flexible triggers, safe cutoffs, and custom prompts for efficient AI apps.

Topics

Resources

License

Contributing

Stars

Watchers

Forks