@@ -8759,9 +8759,9 @@ <h5>Grouping and Aggregation</h5>
8759
8759
Let E := [], a list of pairs of the form (variable, expression)
8760
8760
8761
8761
If Q contains GROUP BY exprlist
8762
- Let G := Group(exprlist, ToList(P))
8762
+ Let Grp := Group(exprlist, ToList(P))
8763
8763
Else If Q contains an aggregate in SELECT, HAVING, ORDER BY
8764
- Let G := Group((1), ToList(P))
8764
+ Let Grp := Group((1), ToList(P))
8765
8765
Else
8766
8766
skip the rest of the aggregate step
8767
8767
End
@@ -8774,14 +8774,14 @@ <h5>Grouping and Aggregation</h5>
8774
8774
End
8775
8775
For each aggregate R(args ; scalarvals) now in X
8776
8776
# note scalarvals may be omitted, then it's equivalent to the empty set
8777
- A<span><sub>i</sub></span> := Aggregation(args, R, scalarvals, G )
8777
+ A<span><sub>i</sub></span> := Aggregation(args, R, scalarvals, Grp )
8778
8778
Replace R(...) with agg<span><sub>i</sub></span> in Q
8779
8779
i := i + 1
8780
8780
End
8781
8781
End
8782
8782
8783
8783
For each variable V appearing outside of an aggregate
8784
- A<span><sub>i</sub></span> := Aggregation(V, Sample, {}, G )
8784
+ A<span><sub>i</sub></span> := Aggregation(V, Sample, {}, Grp )
8785
8785
E := E append (V, agg<span><sub>i</sub></span>)
8786
8786
i := i + 1
8787
8787
End
@@ -9753,8 +9753,8 @@ <h3>Evaluation Semantics</h3>
9753
9753
<div id="defn_evalAggregation">
9754
9754
<b>Definition: Evaluation of Aggregation</b>
9755
9755
</div>
9756
- <p>eval(D(G), Aggregation(exprlist, func, scalarvals, P )) = Aggregation(exprlist, func,
9757
- scalarvals, eval(D(G), P ))</p>
9756
+ <p>eval(D(G), Aggregation(exprlist, func, scalarvals, Grp )) = Aggregation(exprlist, func,
9757
+ scalarvals, eval(D(G), Grp ))</p>
9758
9758
</div>
9759
9759
<div class="defn">
9760
9760
<div id="defn_evalAggregateJoin">
0 commit comments