Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 49 additions & 19 deletions src/pipelines/faster_live_portrait_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,10 @@ def init_models(self, **kwargs):
def init_vars(self, **kwargs):
self.mask_crop = cv2.imread(self.cfg.infer_params.mask_crop_path, cv2.IMREAD_COLOR)
self.frame_id = 0
self.src_lmk_pre = None
self.dri_lmk_pre = None
self.dri_initial = None
self.dri_diff = None
self.dri_reanalysis = False
self.R_d_0 = None
self.x_d_0_info = None

Expand Down Expand Up @@ -187,6 +190,7 @@ def prepare_source(self, source_path, **kwargs):
img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
pitch, yaw, roll, t, exp, scale, kp = self.model_dict["motion_extractor"].predict(
img_crop_256x256)
print(f"\n motion precdicted scale:{scale}")
x_s_info = {
"pitch": pitch,
"yaw": yaw,
Expand Down Expand Up @@ -288,18 +292,44 @@ def run(self, image, img_src, src_info, **kwargs):
I_p_pstbk = torch.from_numpy(img_src).to(self.device).float()
realtime = kwargs.get("realtime", False)

if self.cfg.infer_params.flag_crop_driving_video:
if self.src_lmk_pre is None:
src_face = self.model_dict["face_analysis"].predict(img_bgr)
if len(src_face) == 0:
self.src_lmk_pre = None
if self.cfg.infer_params.flag_crop_driving_video:

if self.dri_lmk_pre is None:
#initialization
dri_face = self.model_dict["face_analysis"].predict(img_bgr)
if len(dri_face) == 0:
self.dri_lmk_pre = None
return None, None, None
lmk = src_face[0]
lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
self.src_lmk_pre = lmk.copy()
lmk = self.model_dict["landmark"].predict(img_rgb, dri_face[0])
slice = lmk[:,0]
self.diff = slice.max()-slice.min()
self.dri_lmk_pre = lmk.copy()
self.dri_initial = lmk.copy()
elif self.dri_reanalysis:
dri_face = self.model_dict["face_analysis"].predict(img_bgr)
if len(dri_face) == 0:
# assert self.dri_lmk_pre is not None
# Temporarily use the frame before lost
lmk = self.dri_initial
else:
# Re initialization
self.dri_reanalysis = False
lmk = self.model_dict["landmark"].predict(img_rgb, dri_face[0])
slice = lmk[:,0]
self.diff = slice.max()-slice.min()
self.dri_lmk_pre = lmk.copy()
self.dri_initial = lmk.copy()
else:
lmk = self.model_dict["landmark"].predict(img_rgb, self.src_lmk_pre)
self.src_lmk_pre = lmk.copy()
lmk = self.model_dict["landmark"].predict(img_rgb, self.dri_lmk_pre)
slice = lmk[:,0]
dri_diff = slice.max()-slice.min()
if self.dri_diff - dri_diff > 20:
self.dri_reanalysis = True # not confident when weird shrink
elif dri_diff < 32: # not confident, say less than 32 pixels
self.dri_reanalysis = True
self.dri_diff = dri_diff
self.dri_lmk_pre = lmk.copy()


ret_bbox = parse_bbox_from_landmark(
lmk,
Expand All @@ -325,17 +355,17 @@ def run(self, image, img_src, src_info, **kwargs):
img_crop = ret_dct["img_crop"]
img_crop = cv2.resize(img_crop, (256, 256))
else:
if self.src_lmk_pre is None:
src_face = self.model_dict["face_analysis"].predict(img_bgr)
if len(src_face) == 0:
self.src_lmk_pre = None
if self.dri_lmk_pre is None:
dri_face = self.model_dict["face_analysis"].predict(img_bgr)
if len(dri_face) == 0:
self.dri_lmk_pre = None
return None, None, None
lmk = src_face[0]
lmk = dri_face[0]
lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
self.src_lmk_pre = lmk.copy()
self.dri_lmk_pre = lmk.copy()
else:
lmk = self.model_dict["landmark"].predict(img_rgb, self.src_lmk_pre)
self.src_lmk_pre = lmk.copy()
lmk = self.model_dict["landmark"].predict(img_rgb, self.dri_lmk_pre)
self.dri_lmk_pre = lmk.copy()
lmk_crop = lmk.copy()
img_crop = cv2.resize(img_rgb, (256, 256))

Expand Down