AI-powered sales call analysis with audio transcription, content scraping, and deep LLM insights.
The Sales Call Analyzer provides comprehensive AI-powered call analytics through three main services:
- 🎙 Audio Service – Upload audio files for transcription and analysis
- 👻 Phantom Service – Extract transcripts from URLs using headless browser technology
- 📝 Transcript Service – Analyze pre-provided transcripts directly
- Multi-Service Analysis: Support for audio files, URL scraping, and direct transcript input
- AI-Powered Transcription: Automatic audio-to-text conversion using Google Gemini API
- Deep LLM Analysis: Comprehensive insights including sentiment, key points, and recommendations
- Modern UI: Beautiful, responsive interface built with Next.js and Tailwind CSS
- Real-time Processing: Live status updates and progress tracking
- Cost Tracking: Monitor API usage and token costs
- Secure Authentication: JWT-based user authentication and authorization
- Express.js REST API
- MongoDB with Mongoose ODM
- Google Gemini API for AI processing
- Playwright for web scraping
- JWT authentication
- Winston logging
- Multer file upload handling
- React 18 with TypeScript
- Tailwind CSS for styling
- Radix UI components
- React Hook Form for form handling
- Axios for API communication
sales_call_analyzer/
├── Nodejs/ # Backend API
│ ├── src/
│ │ ├── config/ # Configuration files
│ │ ├── database/ # Database setup
│ │ ├── middleware/ # Express middleware
│ │ ├── models/ # MongoDB models
│ │ ├── routes/ # API routes
│ │ ├── services/ # Business logic
│ │ └── utils/ # Utility functions
│ └── package.json
├── Nextjs/ # Frontend application
│ ├── src/
│ │ ├── app/ # Next.js app directory
│ │ ├── components/ # React components
│ │ ├── lib/ # Utility libraries
│ │ └── types/ # TypeScript types
│ └── package.json
└── README.md
- Node.js 18+
- MongoDB
- Google Gemini API key
- Navigate to the backend directory:
cd Nodejs- Install dependencies:
npm install- Create environment file:
cp .env.example .env- Configure environment variables in
.env:
PORT=5001
MONGODB_URI=mongodb://localhost:27017/sales_call_analyzer
JWT_SECRET=your_jwt_secret_key
GEMINI_API_KEY=your_gemini_api_key- Start the backend server:
npm run dev- Navigate to the frontend directory:
cd Nextjs- Install dependencies:
npm install- Create environment file:
cp .env.example .env.local- Configure environment variables in
.env.local:
NEXT_PUBLIC_API_URL=http://localhost:5001/api- Start the frontend development server:
npm run dev- Upload audio files (MP3, WAV, M4A, AAC, OGG, FLAC)
- Automatic transcription using Gemini API
- File size and duration validation
- Optional additional context from URLs
- Extract transcripts from web pages
- Uses Playwright for headless browser automation
- Supports various transcript formats
- Optional additional content scraping
- Direct transcript analysis
- Support for various transcript formats
- Optional additional context integration
- Real-time validation and processing
- Call Summary: Comprehensive overview of the conversation
- Sentiment Analysis: Overall sentiment with confidence scores
- Key Insights: Important points and observations
- Action Items: Specific next steps and tasks
- Participant Analysis: Speaker identification and speaking time
- Recommendations: Improvement suggestions
- Risk Factors: Potential issues and concerns
- Opportunities: Growth and development areas
- JWT-based authentication
- File upload validation
- Rate limiting
- CORS protection
- Input sanitization
- Error handling
- Comprehensive logging with Winston
- API usage tracking
- Cost monitoring
- Performance metrics
- Error tracking
- Set up MongoDB database
- Configure environment variables
- Deploy to your preferred platform (Heroku, AWS, etc.)
- Set up process management (PM2)
- Build the application:
npm run build - Deploy to Vercel, Netlify, or your preferred platform
- Configure environment variables
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
This project is licensed under the MIT License.
For support and questions, please open an issue in the repository.
Built with ❤️ using Node.js, Next.js, and AI technology.