π An open-source platform to define, organize, and run Agentic AI
Wegent is an open-source AI native operating system that enables you to define, organize, and run intelligent agents at scale. Built on Kubernetes-style declarative API and CRD (Custom Resource Definition) design patterns, Wegent provides a standardized framework for creating and managing AI agent ecosystems.
graph LR
subgraph AIResource ["π AI Native Resource"]
subgraph YAMLDef ["π YAML Definitions"]
Ghost["π» Ghost<br/>Agent Soul"]
Model["π§ Model<br/>Model Configuration"]
Shell["π Shell<br/>Agent Program"]
Bot["π€ Bot<br/>Agent Instance"]
CollabModel["π€ Collaboration<br/>Collaboration Model"]
Team["π₯ Team<br/>Collaborative Team"]
end
end
subgraph Wegent ["π Wegent"]
Workspace["πΌ Workspace<br/>Work Environment"]
TeamInstance["π₯ Agent Team Instance<br/>Running Team"]
end
User["π€ User"]
Task["π― Task<br/>User Task"]
%% CRD Resource Relationships
Ghost --> Bot
Model --> Bot
Shell --> Bot
Bot --> Team
CollabModel --> Team
Shell --> Team
%% Team Definition to Instance
AIResource --> Wegent
Workspace --> TeamInstance
%% User Interaction Flow
User --> Task
Task --> TeamInstance
TeamInstance --> Task
%% Styling
classDef yamlBox stroke-dasharray: 5 5
classDef runtimeBox stroke:#ff6b6b,stroke-width:2px
classDef resourceBox stroke:#4ecdc4,stroke-width:2px
class YAMLDef yamlBox
class Runtime runtimeBox
class AIResource resourceBox
- π» Ghost: The "soul" of an agent - defines personality, capabilities, and behavior patterns
- π§ Model: AI model configuration - defines environment variables and model parameters
- π Shell: The "executable" - A program capable of launching an agent
- π€ Bot: A complete agent instance combining Ghost + Shell + Model
- π₯ Team: Composed of multiple Bots + Collaboration Model, defining how agents work together
- π€ Collaboration: Defines the interaction patterns between Bots in a Team (like Workflow)
- πΌ Workspace: Isolated work environments for tasks and projects
- π― Task: Executable units of work assigned to teams
- Standardized: Universal AI agent runtime specifications, like Kubernetes for containers
- Declarative: Define and manage agents through simple YAML configurations
- Collaborative: Built-in support for multi-agent teamwork and orchestration
- Multi-Model Support: Currently supports Claude Code, with plans for Codex and Gemini
- Flexible Configuration: Customizable agent personalities and capabilities
- Task Orchestration: Intelligent scheduling and execution
- Docker and Docker Compose
- Git
-
Clone the repository
git clone https://github.com/wecode-ai/wegent.git cd wegent
-
Start the platform
docker-compose up -d
-
Access the web interface
- Open http://localhost:3000 in your browser
-
Configure GitHub Access Tokens
- Follow the page instructions to configure your GitHub access token
-
Configure Bot
Wegent comes with a built-in development bot. Simply configure your Claude API key to start using it:
{ "env": { "ANTHROPIC_MODEL": "claude-4.1-opus", "ANTHROPIC_API_KEY": "xxxxxx", "ANTHROPIC_BASE_URL": "sk-xxxxxx", "ANTHROPIC_SMALL_FAST_MODEL": "claude-3.5-haiku" } } ```bash
-
Run task
On the task page, select your project and branch, describe your development requirements, such as implementing a bubble sort algorithm using Python
graph TB
subgraph "π₯οΈ Management Platform Layer"
Frontend["π Next.js Frontend"]
Backend["βοΈ FastAPI Backend"]
API["π Declarative API"]
end
subgraph "π Data Layer"
MySQL[("πΎ MySQL Database")]
end
subgraph "π Execution Layer"
ExecutorManager["π― Executor Manager"]
Executor1["π Executor 1"]
Executor2["π Executor 2"]
ExecutorN["π Executor N"]
end
subgraph "π€ Agent Layer"
Claude["π§ Claude Code"]
AngoPlanned["π» Agno (Planned)"]
DifyPlanned["β¨ Dify (Planned)"]
end
%% System Interactions
Frontend --> API
API --> Backend
Backend --> MySQL
Backend --> ExecutorManager
ExecutorManager --> Executor1
ExecutorManager --> Executor2
ExecutorManager --> ExecutorN
%% AI Program Integration (Currently only supports Claude Code)
Executor1 --> Claude
Executor2 --> Claude
ExecutorN --> Claude
wegent/
βββ backend/ # FastAPI backend service
βββ frontend/ # Next.js web interface
βββ executor/ # Task execution engine
βββ executor_manager/ # Execution orchestration
βββ shared/ # Common utilities and models
βββ docker/ # Container configurations
-
Backend Development
cd backend pip install -r requirements.txt uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload
-
Frontend Development
cd frontend npm install npm run dev
-
Run Tests
# Backend tests cd backend && python -m pytest # Frontend tests cd frontend && npm test
We welcome contributions! Please see our Contributing Guide for details.
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
- π Issues: GitHub Issues
Made with β€οΈ by WeCode-AI Team