Skip to content

wei-hsuan-cheng/stewart_platform_sim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 

Repository files navigation

stewart_platform_sim

ROS 2 Python simulation of a six-DoF Stewart platform (or Stewart-Gough platform1,2), which is a parallel manipulator comprising a fixed base platform, a moving end-effector platform, and six serial SPS sturctures2.

Stewart-Gough Platform Picture

The inverse kinematics (IK) and differential kinematics (DK) problems are solved as to obtain the required leg lengths and leg velocities for driving the robot to achieve a desired motion in $SE(3)$.

The map for IK, $f_{\mathrm{ik}}:\ SE(3) \to \mathbb{R}^6$ is provided, where

  • $\boldsymbol{s} = f_{\mathrm{ik}}(^b\boldsymbol{\xi}_e)$
  • $\boldsymbol{s} \in \mathbb{R}^6$ is the leg length
  • $^b\boldsymbol{\xi}_e \in SE(3)$ is the end-effector pose w.r.t. base.

The inverse Jacobian for DK, $J_b^{-1}:\ se(3) \to \mathbb{R}^6$ is also provided, where

  • $\dot{\boldsymbol{s}} = J_b^{-1} \cdot \mathcal{V}_b = J_b^{-1} \cdot \mathrm{Ad}(^b\boldsymbol{\xi}_e) \cdot \mathcal{V}_e$
  • $\dot{\boldsymbol{s}} \in \mathbb{R}^6$ is the leg velocity
  • $J_b^{-1} \in \mathbb{R}^{6\times 6}$ and $\mathcal{V}_b \in se(3)$ are the base inverse Jacobian and base twist, respectively
  • $\mathcal{V}_e \in se(3)$ is the end-effector twist (spatial velocity for both linear and angular) that can be transformed into $\mathcal{V}_b$ through the adjoint map $\mathrm{Ad}(^b\boldsymbol{\xi}_e) \in \mathbb{R}^{6\times 6}$.

Simulation (visualised in ROS 2 RViz2)

Stewart Platform Sim Demo

Demo

Run the simulation in ros2:

# Simulate in ros2 and visualise in rivz2
cd ~/stewart_platform_sim && python3 sim_ros2.py
rviz2

Bibliography

  • Picture of the Stewart-Gough platform mechanism:

    • [1] J.-P. Merlet, C. Gosselin, and Tian Huang. Parallel mechanisms. In B. Siciliano and O. Khatib, editors, Handbook of Robotics, Second Edition, pages 443–461. Springer-Verlag, 2016.
  • Stewart platform IK and DK:

    • [2] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, 2017.

Contact

About

ROS 2 Python simulation of a six-DoF stewart platform with SPS structure

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages