Skip to content

Update bounds_to_vertices to handle descending arrays #579

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
231 changes: 228 additions & 3 deletions cf_xarray/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,19 +175,79 @@ def bounds_to_vertices(
f"Bounds format not understood. Got {bounds.dims} with shape {bounds.shape}."
)

core_dim_coords = {
dim: bounds.coords[dim].values for dim in core_dims if dim in bounds.coords
}
core_dim_orders = _get_core_dim_orders(core_dim_coords)

return xr.apply_ufunc(
_bounds_helper,
bounds,
input_core_dims=[core_dims + [bounds_dim]],
dask="parallelized",
kwargs={"n_core_dims": n_core_dims, "nbounds": nbounds, "order": order},
kwargs={
"n_core_dims": n_core_dims,
"nbounds": nbounds,
"order": order,
"core_dim_orders": core_dim_orders,
},
output_core_dims=[output_core_dims],
dask_gufunc_kwargs=dict(output_sizes=output_sizes),
output_dtypes=[bounds.dtype],
)


def _bounds_helper(values, n_core_dims, nbounds, order):
def _get_core_dim_orders(core_dim_coords: dict[str, np.ndarray]) -> dict[str, str]:
"""
Determine the order (ascending, descending, or mixed) of each core dimension
based on its coordinates.

Repeated (equal) coordinates are ignored when determining the order. If all
coordinates are equal, the order is treated as "ascending".

Parameters
----------
core_dim_coords : dict of str to np.ndarray
A dictionary mapping dimension names to their coordinate arrays.

Returns
-------
core_dim_orders : dict of str to str
A dictionary mapping each dimension name to a string indicating the order:
- "ascending": strictly increasing (ignoring repeated values)
- "descending": strictly decreasing (ignoring repeated values)
- "mixed": neither strictly increasing nor decreasing (ignoring repeated values)
"""
core_dim_orders = {}

for dim, coords in core_dim_coords.items():
diffs = np.diff(coords)

# Handle datetime64 and timedelta64 safely for both numpy 1.26.4 and numpy 2
if np.issubdtype(coords.dtype, np.datetime64) or np.issubdtype(
coords.dtype, np.timedelta64
):
# Cast to float64 for safe comparison
diffs_float = diffs.astype("float64")
nonzero_diffs = diffs_float[diffs_float != 0]
else:
zero = 0
nonzero_diffs = diffs[diffs != zero]

if nonzero_diffs.size == 0:
# All values are equal, treat as ascending
core_dim_orders[dim] = "ascending"
elif np.all(nonzero_diffs > 0):
core_dim_orders[dim] = "ascending"
elif np.all(nonzero_diffs < 0):
core_dim_orders[dim] = "descending"
else:
core_dim_orders[dim] = "mixed"

return core_dim_orders


def _bounds_helper(values, n_core_dims, nbounds, order, core_dim_orders):
if n_core_dims == 2 and nbounds == 4:
# Vertices case (2D lat/lon)
if order in ["counterclockwise", None]:
Expand All @@ -211,11 +271,176 @@ def _bounds_helper(values, n_core_dims, nbounds, order):
vertex_vals = np.block([[bot_left, bot_right], [top_left, top_right]])
elif n_core_dims == 1 and nbounds == 2:
# Middle points case (1D lat/lon)
vertex_vals = np.concatenate((values[..., :, 0], values[..., -1:, 1]), axis=-1)
vertex_vals = _get_ordered_vertices(values, core_dim_orders)

return vertex_vals


def _get_ordered_vertices(
bounds: np.ndarray, core_dim_orders: dict[str, str]
) -> np.ndarray:
"""
Convert a bounds array of shape (..., N, 2) or (N, 2) into a 1D array of vertices.

This function reconstructs the vertices from a bounds array, handling both
monotonic and non-monotonic cases.

Monotonic bounds (all values strictly increase or decrease when flattened):
- Concatenate the left endpoints (bounds[..., :, 0]) with the last right
endpoint (bounds[..., -1, 1]) to form the vertices.

Non-monotonic bounds:
- Determine the order of the core dimension(s) ('ascending' or 'descending').
- For ascending order:
- Use the minimum of each interval as the vertex.
- Use the maximum of the last interval as the final vertex.
- For descending order:
- Use the maximum of each interval as the vertex.
- Use the minimum of the last interval as the final vertex.
- Vertices are then sorted to match the coordinate direction.

Features:
- Handles both ascending and descending bounds.
- Preserves repeated coordinates if present.
- Output shape is (..., N+1) or (N+1,).

Parameters
----------
bounds : np.ndarray
Array of bounds, typically with shape (N, 2) or (..., N, 2).
core_dim_orders : dict[str, str]
Dictionary mapping core dimension names to their order ('ascending' or
'descending'). Used for sorting the vertices.

Returns
-------
np.ndarray
Array of vertices with shape (..., N+1) or (N+1,).
"""
order = _get_order_of_core_dims(core_dim_orders)

if _is_bounds_monotonic(bounds):
vertices = np.concatenate((bounds[..., :, 0], bounds[..., -1:, 1]), axis=-1)
else:
if order == "ascending":
endpoints = np.minimum(bounds[..., :, 0], bounds[..., :, 1])
last_endpoint = np.maximum(bounds[..., -1, 0], bounds[..., -1, 1])
elif order == "descending":
endpoints = np.maximum(bounds[..., :, 0], bounds[..., :, 1])
last_endpoint = np.minimum(bounds[..., -1, 0], bounds[..., -1, 1])

vertices = np.concatenate(
[endpoints, np.expand_dims(last_endpoint, axis=-1)], axis=-1
)

vertices = _sort_vertices(vertices, order)

return vertices


def _is_bounds_monotonic(bounds: np.ndarray) -> bool:
"""Check if the bounds are monotonic.

Arrays are monotonic if all values are increasing or decreasing. This
functions ignores an intervals where consecutive values are equal, which
represent repeated coordinates.

Parameters
----------
arr : np.ndarray
Numpy array to check, typically with shape (..., N, 2).

Returns
-------
bool
True if the flattened array is increasing or decreasing, False otherwise.
"""
# NOTE: Python 3.10 uses numpy 1.26.4. If the input is a datetime64 array,
# numpy 1.26.4 may raise: numpy.core._exceptions._UFuncInputCastingError:
# Cannot cast ufunc 'greater' input 0 from dtype('<m8[ns]') to dtype('<m8')
# with casting rule 'same_kind' To avoid this, always cast to float64 before
# np.diff.
Comment on lines +358 to +362
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Note about Python 3.10 and numpy 1.26.4 issue in the build.

arr_numeric = bounds.astype("float64").flatten()
diffs = np.diff(arr_numeric)
nonzero_diffs = diffs[diffs != 0]

# All values are equal, treat as monotonic
if nonzero_diffs.size == 0:
return True

return bool(np.all(nonzero_diffs > 0) or np.all(nonzero_diffs < 0))


def _get_order_of_core_dims(core_dim_orders: dict[str, str]) -> str:
"""
Determines the common order of core dimensions from a dictionary of
dimension orders.

Parameters
----------
core_dim_orders : dict of str
A dictionary mapping dimension names to their respective order strings.

Returns
-------
order : str
The common order string shared by all core dimensions.

Raises
------
ValueError
If the core dimension orders are not all aligned (i.e., not all values
are the same).
"""
orders = set(core_dim_orders.values())

if len(orders) != 1:
raise ValueError(
f"All core dimension orders must be aligned. Got orders: {core_dim_orders}"
)

order = next(iter(orders))

return order


def _sort_vertices(vertices: np.ndarray, order: str) -> np.ndarray:
"""
Sorts the vertices array along the last axis in ascending or descending order.

Parameters
----------
vertices : np.ndarray
An array of vertices to be sorted. Sorting is performed along the last
axis.
order : str
The order in which to sort the vertices. Must be either "ascending" or
any other value for descending order.

Returns
-------
np.ndarray
The sorted array of vertices, with the same shape as the input.

Examples
--------
>>> import numpy as np
>>> vertices = np.array([[3, 1, 2], [6, 5, 4]])
>>> _sort_vertices(vertices, "ascending")
array([[1, 2, 3],
[4, 5, 6]])
>>> _sort_vertices(vertices, "descending")
array([[3, 2, 1],
[6, 5, 4]])
"""
if order == "ascending":
new_vertices = np.sort(vertices, axis=-1)
else:
new_vertices = np.sort(vertices, axis=-1)[..., ::-1]

return new_vertices


def vertices_to_bounds(
vertices: DataArray, out_dims: Sequence[str] = ("bounds", "x", "y")
) -> DataArray:
Expand Down
56 changes: 55 additions & 1 deletion cf_xarray/tests/test_helpers.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import xarray as xr
from numpy.testing import assert_array_equal
from xarray.testing import assert_equal

Expand All @@ -12,7 +13,7 @@


def test_bounds_to_vertices() -> None:
# 1D case
# 1D case (stricly monotonic, descending bounds)
ds = airds.cf.add_bounds(["lon", "lat", "time"])
lat_c = cfxr.bounds_to_vertices(ds.lat_bounds, bounds_dim="bounds")
assert_array_equal(ds.lat.values + 1.25, lat_c.values[:-1])
Expand All @@ -34,6 +35,59 @@ def test_bounds_to_vertices() -> None:
lon_no = cfxr.bounds_to_vertices(rotds.lon_bounds, bounds_dim="bounds", order=None)
assert_equal(lon_no, lon_ccw)

# 2D case (monotonicly increasing coords, non-monotonic bounds)
bounds_2d_desc = xr.DataArray(
[[50.5, 50.0], [51.0, 50.5], [51.0, 50.5], [52.0, 51.5], [52.5, 52.0]],
dims=("lat", "bounds"),
coords={"lat": [50.75, 50.75, 51.25, 51.75, 52.25]},
)
expected_vertices_2d_desc = xr.DataArray(
[50.0, 50.5, 50.5, 51.5, 52.0, 52.5],
dims=["lat_vertices"],
)
vertices_2d_desc = cfxr.bounds_to_vertices(bounds_2d_desc, bounds_dim="bounds")
assert_equal(expected_vertices_2d_desc, vertices_2d_desc)

# 3D case (non-monotonic bounds, monotonicly increasing coords)
bounds_3d = xr.DataArray(
[
[
[50.0, 50.5],
[50.5, 51.0],
[51.0, 51.5],
[51.5, 52.0],
[52.0, 52.5],
],
[
[60.0, 60.5],
[60.5, 61.0],
[61.0, 61.5],
[61.5, 62.0],
[62.0, 62.5],
],
],
dims=("extra", "lat", "bounds"),
coords={
"extra": [0, 1],
"lat": [0, 1, 2, 3, 4],
"bounds": [0, 1],
},
)
expected_vertices_3d = xr.DataArray(
[
[50.0, 50.5, 51.0, 51.5, 52.0, 52.5],
[60.0, 60.5, 61.0, 61.5, 62.0, 62.5],
],
dims=("extra", "lat_vertices"),
coords={
"extra": [0, 1],
},
)
vertices_3d = cfxr.bounds_to_vertices(
bounds_3d, bounds_dim="bounds", core_dims=["lat"]
)
assert_equal(vertices_3d, expected_vertices_3d)

# Transposing the array changes the bounds direction
ds = mollwds.transpose("x", "y", "x_vertices", "y_vertices", "bounds")
lon_cw = cfxr.bounds_to_vertices(
Expand Down
Loading