ppnet(
(layer1): Sequential(
(conv): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1))
(bn): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(layer2): Sequential(
(conv): Conv2d(16, 32, kernel_size=(1, 1), stride=(1, 1))
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.001, affine=True, track_running_stats=True)
(sigmoid): Sigmoid()
(avgpool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(layer3): Sequential(
(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.001, affine=True, track_running_stats=True)
(sigmoid): Sigmoid()
(avgpool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(layer4): Sequential(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.001, affine=True, track_running_stats=True)
(relu): ReLU()
)
(layer5): Sequential(
(conv): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1))
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.001, affine=True, track_running_stats=True)
(relu): ReLU()
(maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(fc1): Linear(in_features=43264, out_features=512, bias=True)
(bn1): BatchNorm1d(512, eps=1e-05, momentum=0.001, affine=True, track_running_stats=True)
(relu1): ReLU()
(fc2): Linear(in_features=512, out_features=512, bias=True)
(bn2): BatchNorm1d(512, eps=1e-05, momentum=0.001, affine=True, track_running_stats=True)
(relu2): ReLU()
(drop2): Dropout(p=0.25, inplace=False)
(dis): PairwiseDistance()
(fc3): Linear(in_features=512, out_features=600, bias=True)
)-
Paper: online
-
Supplementary Material: [ supp ]
-
Pretrained Models: google or baidu 🔑 iavt
-
Raspberry Pi 4B Development Environment Establishment: 📜
-
Publicly Available Datasets: DCPD, Tongji, IITD, REST, NTU, XJTU-UP
-
Profiler:
pip install ptflopsFlops-Counter
Requirements Recommanded hardware requirement for training:
-
GPU Mem$\ge$ 3G -
CPU Mem$\ge$ 16G
Development environment establishment:
- cuda & cudnn & gpu-driver
Anaconda: download & installPyTorch: installation command lines are as followsconda create -n ppnet python=3.8 conda activate ppnet conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch pip install -r requirements.txt
tips:
requirements.txtcould be found at the root folder of this project- use different CUDA versions
Tested versions:
-
pytorch:1.2 to 1.7
-
torchvision:0.4 to 0.8
-
python: 3.7 to 3.8
-
opencv: 4.8 (Generally, the default version is sufficient)
Configurations
-
modify
path1andpath2ingenText.pypath1: path of the training set (e.g., Tongji session1)path2: path of the testing set (e.g., Tongji session2)
-
modify
num_classesintrain.py,test.py, andinference.py- DCPD: 271, Tongji: 600, IITD: 460, REST: 358, XJTU-UP: 200, KTU: 145
Commands
cd path/to/PPNet/
#in the PPNet folder:
#prepare data
cp ./data/for_reference/genText_xxx.py ./data/genText.py
#where xxx is the dataset name, e.g., tongji =>genText_tongji.py
Modify the DB path variable in ./data/genText.py
#the sample naming format should be consistent with the script's requirements
#generate the training and testing data sets
python ./data/genText.py
mv ./train.txt ./data/
mv ./test.txt ./data/
#train the network
python train.py
#test the model
python test.py
#inference
python inference.py
#Metrics
#obtain the genuine-impostor matching score distribution curve
python getGI.py ./rst/veriEER/scores_xxx.txt scores_xxx
#obtain the EER and the ROC curve
python getEER.py ./rst/veriEER/scores_xxx.txt scores_xxxThe .pth file will be generated at the current folder, and all the other results will be generated in the ./rst folder.
Dataset preparation
- The
genText.pyscript is responsible for traversing images in the dataset folder and parsing class labels (starting from 0) based on each filename's format.- For each sample, the full path (including the filename) and its corresponding class label (separated by a space) are saved as a single line in either the
train.txtortest.txtfile. - In our experiments, each individual palm represents a unique class.
- For each sample, the full path (including the filename) and its corresponding class label (separated by a space) are saved as a single line in either the
- The method used to extract
userIDandsampleIDfrom image filenames is implemented within the script, handling two main scenarios:- For the original Tongji dataset, image filenames range sequentially from
00001.bmpto06000.bmp. Every consecutive group of 10 samples originates from the same palm. Therefore, ingenText.py, theuserID(class label) is derived by integer division of the numeric filename by 10 (i.e., filename // 10). - or other datasets with complex directory structures, preprocessing can be applied to simplify organization, such as renaming files and placing them into a single folder. In such cases, the
userIDparsing logic ingenText.pymust align with the new filename and directory conventions. - The recommended renaming format is:
xxxx_yyyy.zzzxxxxdenotes the userID, representing a unique palm.yyyydenotes the sampleID, representing an individual capture of that palm.IDswith fewer than four digits are zero-padded on the left.zzzis the image file extension (e.g., bmp, jpg, tiff,etc.).- Example:
0010_0003.bmprepresents the 3rd sample of palm #10.
- For the original Tongji dataset, image filenames range sequentially from
Sample output of genText.py:
test.txt (Tongji):
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00001.bmp 0
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00002.bmp 0
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00003.bmp 0
...
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00008.bmp 0
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00009.bmp 0
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00010.bmp 0
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00011.bmp 1
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00012.bmp 1
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00013.bmp 1
...
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00018.bmp 1
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00019.bmp 1
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00020.bmp 1
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00021.bmp 2
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00022.bmp 2
/home/sunny/datasets/Tongji/palmprint/ROI/session2/00023.bmp 2
...
/home/sunny/datasets/Tongji/palmprint/ROI/session2/05991.bmp 599
/home/sunny/datasets/Tongji/palmprint/ROI/session2/05992.bmp 599
/home/sunny/datasets/Tongji/palmprint/ROI/session2/05993.bmp 599
...
/home/sunny/datasets/Tongji/palmprint/ROI/session2/05998.bmp 599
/home/sunny/datasets/Tongji/palmprint/ROI/session2/05999.bmp 599
/home/sunny/datasets/Tongji/palmprint/ROI/session2/06000.bmp 599test.txt (IITD):
/home/sunny/datasets/IITD/roi/0001_0001.bmp 0
/home/sunny/datasets/IITD/roi/0001_0002.bmp 0
/home/sunny/datasets/IITD/roi/0001_0003.bmp 0
/home/sunny/datasets/IITD/roi/0002_0001.bmp 1
/home/sunny/datasets/IITD/roi/0002_0002.bmp 1
/home/sunny/datasets/IITD/roi/0002_0003.bmp 1
/home/sunny/datasets/IITD/roi/0003_0001.bmp 2
/home/sunny/datasets/IITD/roi/0003_0002.bmp 2
/home/sunny/datasets/IITD/roi/0003_0003.bmp 2
/home/sunny/datasets/IITD/roi/0004_0001.bmp 3
/home/sunny/datasets/IITD/roi/0004_0002.bmp 3
/home/sunny/datasets/IITD/roi/0004_0003.bmp 3
...🌻If it helps you, please cite the following paper:🌱
@article{liang2022innovative,
author={Liang, Xu and Li, Zhaoqun and Fan, Dandan and Zhang, Bob and Lu, Guangming and Zhang, David},
journal={IEEE Transactions on Systems, Man, and Cybernetics: Systems},
title={Innovative Contactless Palmprint Recognition System Based on Dual-Camera Alignment},
year={2022},
volume={52},
number={10},
pages={6464-6476},
doi={10.1109/TSMC.2022.3146777}}Xu Liang, Zhaoqun Li, Dandan Fan, Bob Zhang, Guangming Lu and David Zhang, "Innovative Contactless Palmprint Recognition System Based on Dual-Camera Alignment," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6464-6476, Oct. 2022, doi: 10.1109/TSMC.2022.3146777.
This project is under the CC-BY-NC 4.0 license. See LICENSE for details.
[1] X. Liang, D. Fan, J. Yang, W. Jia, G. Lu and D. Zhang, "PKLNet: Keypoint Localization Neural Network for Touchless Palmprint Recognition Based on Edge-Aware Regression," in IEEE Journal of Selected Topics in Signal Processing, 17(3), pp. 662-676, May 2023, doi: 10.1109/JSTSP.2023.3241540. (Palmprint ROI extraction) pklnet🖖
[2] X. Liang, J. Yang, G. Lu and D. Zhang, "CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels," in IEEE Signal Processing Letters, vol. 28, pp. 1739-1743, 2021, doi: 10.1109/LSP.2021.3103475. (Orientation coding) compnet🖐️
[3] X. Liang, Z. Li, D. Fan, B. Zhang, G. Lu and D. Zhang, "Innovative Contactless Palmprint Recognition System Based on Dual-Camera Alignment," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6464-6476, Oct. 2022, doi: 10.1109/TSMC.2022.3146777. (Bimodal alignment)
[4] PyTorch API Documents: https://pytorch.org/docs/stable/index.html