Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion yambopy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,10 @@
from yambopy.nl.harmonic_analysis import *
from yambopy.nl.sum_frequencies import *
from yambopy.nl.hhg_tools import *

from yambopy.nl.nl_analysis import *
from yambopy.nl.sin_analysis import *
from yambopy.nl.freqmix_analysis import *
from yambopy.nl.pulse_analysis import *
#doublegrid files
from yambopy.double_grid.dg_convergence import *

Expand Down
24 changes: 20 additions & 4 deletions yambopy/dbs/nldb.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,27 @@ def read_Efield(self,database,RT_step,n):
efield["name"] =database.variables['Field_Name_'+str(n)][...].tobytes().decode().strip()
efield["versor"] =database.variables['Field_Versor_'+str(n)][:].astype(np.double)
efield["intensity"] =database.variables['Field_Intensity_'+str(n)][0].astype(np.double)
efield["damping"] =database.variables['Field_Damping_'+str(n)][0].astype(np.double)
efield["freq_range"] =database.variables['Field_Freq_range_'+str(n)][:].astype(np.double)
efield["freq_steps"] =database.variables['Field_Freq_steps_'+str(n)][:].astype(np.double)
efield["freq_step"] =database.variables['Field_Freq_step_'+str(n)][0].astype(np.double)
try:
efield["damping"] =database.variables['Field_FWHM_'+str(n)][0].astype(np.double)
except:
efield["damping"] =database.variables['Field_Damping_'+str(n)][0].astype(np.double)
try:
efield["freq_range"] =database.variables['Field_Freq_range_'+str(n)][:].astype(np.double)
except:
efield["freq_range"] =database.variables['Field_Freq_'+str(n)][:].astype(np.double)
try:
efield["freq_steps"] =database.variables['Field_Freq_steps_'+str(n)][:].astype(np.double)
except:
efield["freq_steps"] =1.0
try:
efield["freq_step"] =database.variables['Field_Freq_step_'+str(n)][0].astype(np.double)
except:
efield["freq_step"] =0.0
efield["initial_time"] =database.variables['Field_Initial_time_'+str(n)][0].astype(np.double)
try:
efield["peak"] =database.variables['Field_peak_'+str(n)][0].astype(np.double)
except:
efield["peak"] =10.0
#
# set t_initial according to Yambo
#
Expand Down
230 changes: 230 additions & 0 deletions yambopy/nl/Xn_from_signal_doc.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@


# `Xn_from_signal`: documentation (version 1.1)

#### Myrta Grüning, Claudio Attaccalite, Mike Pointeck, Anna Romani, Mao Yuncheng

This document describes the `Xn_from_signal` abstract python class and a set of derived classes, part of the `YamboPy` code, for extracting nonlinear susceptibilities and conductivities from the macroscopic time-dependent polarization $P$ and current $J$. An extended theoretical background can be found in Nonlinear Optics textbooks, see e.g. Sec. 2 of “The Elements of Nonlinear Optics” and the other sources listed in the [bibliography](# Bibliography). The [minimal background](# 0. Minimal theoretical compendium) to understand the code and facilitate further development is given in the next session. The rest of the document is dedicated to describe the [code structure, key workflows, main functions](# 1. Code) and to provide an essential guide of the [code use](# 2. How to use).

---

## 0. Minimal theoretical compendium


The problem solved is algebraic:

$$ M_{kj} S_j = P_k,$$

where $P_k$ is the time-dependent polarization (or current) sampled on $N_t$ times $\{t_k\}$ which is output by the `yambo`/`lumen`code; the resulting $S_j$ is proportional to the susceptibility (conductivity) of nonlinear order $j$. The matrix of coefficients $M_{kj}$, of dimensions $N_t \times N_\text{nl}$ contains the time dependence to the applied electric field. So far three physical situations are implemented:
1. a single monochromatic electric field: ${\bf E}_0 \sin(\omega_0 t)$
2. two monochromatic electric fields: ${\bf E}_0 (\sin(\omega_1 t) + \sin(\omega_2 t))$
3. a pulse-shaped electric field: ${\bf E}(t) \sin(\omega_0 t)$. Here, it is assumed that the shape of the pulse ${\bf E}(t)$ varies slowly with respect to the period $2\pi/\omega_0$. So far, only a Gaussian pulse, ${\bf E}(t) = {\bf E}_0 \exp(-(t-t_0)^2/(2\sigma^2))/(\sqrt{2}\sigma)$ has been implemented.

Four solvers are available:

1. the standard solver for full, well-determined matrix: calls [`numpy.linalg.solve`](https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html)
2. the least square solver, when $N_t \gg N_\text{nl}$ : calls [`numpy.linalg.lstsq`](https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq)
3. the single value decomposition, using the Moore-Penrose pseudoinverse, when $N_t \gg N_\text{nl}$: calls [`numpy.linalg.pinv`](https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv)
4. the least square solver with an initial guess, when $N_t \gg N_\text{nl}$ : calls [`scipy.optimize.least_squares`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html)

From $S_j$ the susceptibilities (or conductivities) $\chi^{(n)}(-\omega_\sigma, \omega_1, \dots, \omega_n)$ are obtained using the following expression:

$$ S_j = C_0 K (-\omega_\sigma, \omega_1, \dots, \omega_n)\chi^{(n)}(-\omega_\sigma, \omega_1, \dots, \omega_n) $$

where $K(-\omega_\sigma; \omega_1, \dots, \omega_n)$ is a numerical factor that accounts for the intrinsic permutation symmetry depending on the nonlinear order and frequency arguments of $\chi$. $C_0$ is a further numerical factor depending on the applied electric field (field strength, normalisation factor, nonlinear order).

Details on the implementation can be found in the sources listed in the bibliography.

---

## 1. Code

### 1.1 Input
It is supposed the `yambo_nl`code (part of the `yambo`/`lumen` suites) was run in the `nonlinear` mode with a loop on a number of frequencies and generated the `ndb.Nonlinear` (with the corresponding fragments). The nonlinear database `ndb.Nonlinear` is then read using the `nldb`class that outputs an object containing all information and data of the run. This object is the input. Further, the user can change in input the defaults of some analysis parameters (see below).

### 1.2 Structure

The code consists of the abstract class, `Xn_from_signal`, and three subclasses corresponding to the three physical situations:
1. `Xn_from_sine`: a single monochromatic electric field
2. `Xn_from_freqmix`: two monochromatic electric fields
3. `Xn_from_pulse`: a pulse-shaped electric field

The main method in the abstract class `Xn_from_signal` is `perform_analysis` defining the sequence of operations to be performed. This is shown in the diagram below. First, defaults are set for each implementation (`set_defaults`). Then a loop is entered on field frequencies. For each implementation, the time range `range`is returned for a given frequency (`set_sampling`). Internally, this method also set the number of sampling points `nsamp`in case it is not user-defined. A second loop in entered on the field directions. The time-dependent signal is sampled (`get_sampling`, common to all implementations) and the sampled-signal $P_k$ (`samp_sig`) together with the sampling times $\{t_k\}$ (`samp_time`) is returned. Next, for each implementation, the elements of the matrix $M_{kj}$ (`matrix`) is defined (`define_matrix`). Finally, the linear system is solved (`solve_lin_system`, common to all implementation) and the output passed to the `out` array. The latter is the input of `output_analysis` and `reconstruct_signal` that are implemented in each subclass.

~~~mermaid
sequenceDiagram
participant Analyzer as Xn_from_signal
participant Impl as Subclass (implements abstract hooks)

Analyzer->>Impl: set_defaults()
loop for each frequency i_f
Analyzer->>Impl: set_sampling(i_f)
Impl-->>Analyzer: range
loop for each direction i_d
Analyzer->>Analyzer: get_sampling(range, i_d, i_f)
Analyzer->>Impl: define_matrix(samp_time, i_f)
Impl-->>Analyzer: matrix
Analyzer->>Analyzer: solve_lin_system(matrix, samp_sig)
Analyzer->>Analyzer: out[:, i_f, i_d] = raw[:out_dim]
end
end
~~~
### 1.3 Abstract class diagram

Attributes, constructor, abstract and concrete methods included in `Xn_from_signal`.


```mermaid
classDiagram
class Xn_from_signal {
<<abstract>>
%% --- Attributes ---
+time : np.ndarray
+T_step : float
+T_deph : float
+efield : dict
+pumps : list
+efields : list
+n_runs : int
+polarization : np.ndarray
+current : np.ndarray
+l_eval_current : bool
+l_out_current : bool
+X_order : int
+solver : str
+samp_mod : str
+nsamp : int
+T_urange : list[float]
+freqs : np.ndarray
+prefix : str
+out_dim : int
+tol : float

%% --- Constructor ---
+__init__(nldb, X_order=4, T_range=[-1,-1], l_out_current=False, nsamp=-1, samp_mod='', solver='', tol=1e-10)

%% --- Special ---
+__str__() str

%% --- Abstract hooks ---
#set_defaults()
#set_sampling(ifrq)
#define_matrix(samp, ifrq)
#update_time_range()
#get_Unit_of_Measure(i_order)
#output_analysis(out, to_file)
#reconstruct_signal(out, to_file)

%% --- Concrete methods ---
+solve_lin_system(mat, samp, init=None) np.ndarray
+perform_analysis() np.ndarray
+get_Unit_of_Measure(i_order) float
+get_sampling(range, idir, ifrq)
}

%% Auxiliary (module-level) functions for completeness
class AuxMath {
+IsSquare(m) bool
+IsWellConditioned(m) bool
+residuals_func(x, M, S_i) float
}
```

### 1.4 Subclasses diagram

The subclasses inherit the attributes and implement the abstract methods from `Xn_from_signal`. In addition:

* `Xn_from_freqmix` has the `pump_freq` attribute, which is the frequency of the second electric field, and the `spike_correction` method which performs again the analysis for data points where the simple least square algebraic solution failed, using least square optimization starting from the averaged solution of the neighbouring data points.
* `Xn_from_pulse`has the `T0` attribute, centre of the Gaussian, and the `build_map` and `divide_by_factor`. The former maps the nonlinearity order $n$ and the number of negative frequencies $m$ into a single index. The latter is a modification of `Divide_by_Field` and is in this class until a proper generalisation of `Divide_by_Field` is available.

```mermaid
classDiagram
note "Attributes and methods of Xn_from_signal in previous diagram"
Xn_from_signal <|-- Xn_from_sine
Xn_from_signal <|-- Xn_from_freqmix
Xn_from_signal <|-- Xn_from_pulse
class Xn_from_pulse{
+ T0 : float
+ build_map()
+ divide_by_factor()
}
class Xn_from_freqmix{
+ pump_freq : float
+ spike_correction()
}
class Xn_from_sine
```
---
## 2. How to use

The diagram below illustrates the general use of the code.

Once the appropriate `ndb.Nonlinear` database has been created with `yambo_nl`, the `YamboNLDB` class is used to read the database and create the object containing all information.

Depending on the external field used in `yambo_nl`, a different subclass is instantiated:

* `Xn_from_sine`: a single monochromatic electric field
* `Xn_from_freqmix`: two monochromatic electric fields
* `Xn_from_pulse`: a pulse-shaped electric field

All subclasses implement the `perform_analysis()` method (setting up and solving the algebraic problem in the [Theory section](## 0. Theory)). The `output_analysis` writes (by default) the susceptibilities (conductivities) on files. For checking the goodness of the analysis, one may output the reconstructed signal (to be compared with the input signal) with `reconstruct_signal`.


```mermaid

graph LR
F[(ndb.Nonlinear)]--> A(Read database with YamboNLDB) -->|NLDB| B1(Xn_from_sine) -->|SIG| C(perform_analysis) -->|OUT| D(output_analysis) --> o.*@{shape: lean-l}
C --> |OUT|E(reconstruct_signal)
E --> o.*@{shape: lean-l}
A -->|NLDB| B2(Xn_from_freqmix)
A -->|NLDB| B3(Xn_from_pulse)
B2 -->|SIG| C
B3 -->|SIG| C

```



### Example 1: Monochromatic external field. Harmonic generation from polarization.

For one monochromatic external field, the `Xn_from_sine` class is instantiated. One can `print` the instance `SIG` to check the value of the class attributes read from `NLDB` and the defaults. Here, the default for `X_order` is overwritten and set to `5`. The output of `perform_analysis` is passed to `OUT`. This is passed as input to `output_analysis` that outputs ` o-DBs.YamboPy-X_probe_order_?`. Second harmonic is in `o-DBs.YamboPy-X_probe_order_2`.

```python
NLDB=YamboNLDB(calc='DBs')
SIG = Xn_from_sine(NLDB,X_order=5)
print(SIG)
OUT = SIG.perform_analysis()
SIG.output_analysis(OUT)
```
### Example 2: Monochromatic external field. Shift-current from current.

For one monochromatic external field, the `Xn_from_sine` class is instantiated. Here, the default for `l_out_current` is overwritten and set to `True`. This means that the current, rather than the polarization is analysed. Note that the `yambo_nl` run must output the current together with polarization. The output of `perform_analysis` is passed to `output_analysis` that outputs ` o-DBs.YamboPy-Sigma_probe_order_?` (shift current is in the `o-DBs.YamboPy-X_probe_order_0` ), and to `reconstruct_signal` that outputs the files `o-DBs.YamboPy-curr_reconstructed_F*`

```python
NLDB=YamboNLDB(calc="DBs")
SIG = Xn_from_sine(NLDB,l_out_current=True)
OUT = SIG.perform_analysis()
SIG.output_analysis(OUT)
SIG.reconstruct_signal(OUT)
```
### Example 3: Frequency mixing. Sum/difference of frequencies.

For two monochromatic external fields, the `Xn_from_freqmix` class is instantiated. Here, the default for the lower limit`T_range` is overwritten and set to `50 fs`. The output of `perform_analysis` is passed to `output_analysis` that in turn outputs `o-DBs.YamboPy-X_probe_order_?_?` each containing the $\chi^{(|n|+|m|)} (-\omega_\sigma; n\omega_1, m\omega_2 )$. The sum/difference of frequencies is given for $n,m=1$ (`o-DBs.YamboPy-X_probe_order_1_1`) and $n=1, m=-1$ (`o-DBs.YamboPy-X_probe_order_1_-1`).

```python
NLDB=YamboNLDB(calc="DBs")
SIG = Xn_from_freqmix(NLDB,T_range=[50.0*fs2aut,-1.0])
OUT = SIG.perform_analysis()
SIG.output_analysis(OUT)
```

Note: in all snippets one must add `from yambopy import *`

---

## Bibliography

1. Butcher PN, Cotter D. The constitutive relation. In: The Elements of Nonlinear Optics. Cambridge Studies in Modern Optics. Cambridge University Press; 1990:12-36.[doi.org/10.1017/CBO9781139167994](https://doi.org/10.1017/CBO9781139167994)
2. Attaccalite C and Grüning M, [Phys. Rev. B 88, 235113 (2013)](https://doi.org/10.1103/PhysRevB.88.235113)
3. Pionteck MN, Grüning M, Sanna S, Attaccalite C, [SciPost Phys. 19, 129 (2025)](https://10.21468/SciPostPhys.19.5.129)
4. Romani A, Grüning M, 'Notes on nonlinear analysis from Gaussian pulses' (unpublished)
30 changes: 18 additions & 12 deletions yambopy/nl/external_efield.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,22 +20,28 @@ def Divide_by_the_Field(efield,order):
divide_by_field=np.power(-2.0*1.0j/efield['amplitude'],order,dtype=np.cdouble)
elif order==0:
divide_by_field=4.0/np.power(efield['amplitude'],2.0,dtype=np.cdouble)

elif efield['name'] == 'QSSIN':
# Approximate relations/does not work yet
sigma=efield['width']
W_0=efield['freq_range'][0]
T_0= np.pi/W_0*float(round(W_0/np.pi*3.*sigma))
T = 2*np.pi/W_0
E_w= math.sqrt(np.pi/2)*sigma*np.exp(-1j*W_0*T_0)*(special.erf((T-T_0)/math.sqrt(2.0)/sigma)+special.erf(T_0/math.sqrt(2.0)/sigma))
# elif efield['name'] == 'QSSIN': ! note that in class Xn_from_pulse there is a factor
#
# This part of code was copied from ypp but it was never used
#
# sigma=efield['width']
# W_0=efield['freq_range'][0]
# T_0= np.pi/W_0*float(round(W_0/np.pi*3.*sigma))
# T = 2*np.pi/W_0
# E_w= math.sqrt(np.pi/2)*sigma*np.exp(-1j*W_0*T_0)*(special.erf((T-T_0)/math.sqrt(2.0)/sigma)+special.erf(T_0/math.sqrt(2.0)/sigma))

if order!=0:
divide_by_field = (-2.0*1.0j/(E_w*efield['amplitude']))**order
elif order==0:
divide_by_field = 4.0/(E_w*efield['amplitude']*np.conj(E_w))
# if order!=0:
# divide_by_field = (-2.0*1.0j/(E_w*efield['amplitude']))**order
# elif order==0:
# divide_by_field = 4.0/(E_w*efield['amplitude']*np.conj(E_w))
else:
raise ValueError("Electric field not implemented in Divide_by_the_Field!")

return divide_by_field

def Gaussian_centre(efield):
ratio=np.pi/efield['freq_range'][0]
sigma=efield["damping"]/(2.0*(2.0*np.log(2.0))**0.5)
peak_ = float(1.0 /ratio * sigma *efield["peak"])
return ratio * float(round(peak_)),sigma

Loading