Data Efficiency Analysis: Maintained 83% performance with 90% of the data Effective even in low-data scenarios Robustness Analysis: Handles anatomical variability Adapts to complex structures
- Deep Learning Framework: PyTorch 2.0.1
- Programming Language: Python 3.9
- Primary Libraries:
- MONAI (Medical Open Network for AI)
- Transformers (Hugging Face)
- Llama-2 (Meta AI)
- TensorBoardX (for visualization)
-
Operating System: Linux (Ubuntu recommended) / Windows with WSL
-
GPU: NVIDIA GPU with CUDA support (45GB+ VRAM recommended)
-
RAM: 64GB+ recommended
-
Storage: 100GB+ free space
# For Ubuntu/Debian
sudo apt-get update
sudo apt-get install python3.9 python3.9-distutils git-lfs# Install pip for Python 3.9
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.9
# Create and activate virtual environment (recommended)
python3.9 -m venv venv
source venv/bin/activate # Linux
# or
.\venv\Scripts\activate # Windows# Install PyTorch with CUDA support
pip install torch==2.0.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Install project dependencies
pip install -r requirements.txtproject/
├── main.py # Entry point for training and inference
├── trainer.py # Training and evaluation logic
├── model/
│ ├── llama2/ # Llama-2 model integration
│ └── segmentation/ # Segmentation model architecture
├── utils/
│ ├── data_utils.py # Data processing utilities
│ └── metrics.py # Evaluation metrics
├── dataset/
│ └── external1/ # Dataset storage
├── optimizers/ # Custom optimizer implementations
├── ckpt/ # Model checkpoints
└── requirements.txt # Project dependencies
- Input: 3D medical images in NPZ format
- Labels: Segmentation masks in NPZ format
- Text Reports: Excel/CSV format
dataset/
└── external1/
└── [case_id]/
├── data.npz # 3D medical image
└── label.npz # Segmentation mask
- Image Encoder: 3D UNet-based architecture
- Text Encoder: Llama-2 7B model
- Multimodal Fusion: Custom attention mechanism
- 3D medical image processing
- Text report integration
- Multi-scale feature extraction
- Attention-based fusion
python main.py \
--pretrained_dir ./ckpt/multimodal \
--context True \
--n_prompts 2 \
--context_length 8 \
--batch_size 1 \
--roi_x 64 \
--roi_y 352 \
--roi_z 352- Batch Size: 1 (adjustable based on GPU memory)
- Learning Rate: 1e-4
- Optimizer: AdamW
- Loss Function: DiceCELoss
- Mixed Precision: Enabled
python main.py \
--pretrained_dir ./ckpt/multimodal \
--context True \
--n_prompts 2 \
--context_length 8 \
--test_mode 2- Segmentation masks in NIfTI format
- Evaluation metrics in CSV format
- TensorBoard logs for visualization
- GPU Memory: 45GB+ recommended
- RAM: 64GB+ recommended
- Storage: 100GB+ for dataset and models
- Adjust batch size based on available GPU memory
- Use gradient accumulation for larger effective batch sizes
- Enable mixed precision training
- Utilize data prefetching
-
CUDA Out of Memory
- Reduce batch size
- Enable gradient checkpointing
- Use mixed precision training
-
Installation Errors
- Ensure correct Python version (3.9)
- Install CUDA toolkit matching PyTorch version
- Use virtual environment
-
Data Loading Issues
- Verify NPZ file format
- Check file permissions
- Validate data directory structure





